Midterm #2

Please print your name:

No notes or tools of any kind are permitted.	There are 25 points in total.	You need to show work to receive full credit.
	Good luck!	
Problem 1. (warmup, 4 points)		
(a) The remainder of 10202017 modu	lo 11 is .	
(b) Complete the following to a comp	blete set of residues modulo 7:	-4, -2, -1, 2, 4, 8,
(c) The number 51 in base 7 is		
(d) List all primitive roots modulo 5:		
Solution.		
(a) $10202017 \equiv 7 - 1 + 0 - 2 + 0 - 0 - 2 + 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0$	$0 - 1 = 1 \pmod{11}$. Hence, the	remainder of $10202017 \mod 11$ is 1.
(b) $-4, -2, -1, 2, 4, 8, 0$ (a number co	ngruent to 0 modulo 7 was mis	sing)
(c) $51 = 7^2 + 2 = (102)_7$		
(d) $2^0 = 1, 2^1 = 2, 2^2 = 4, 2^3 \equiv 3$, so 2 is	a primitive root.	
$3^0 = 1, 3^1 = 3, 3^2 = 4, 3^3 \equiv 2$, so 3 is	a primitive root.	
$4^0\!=\!1,4^1\!=\!4,4^2\!=\!1,$ so 4 is not a	primitive root.	
Hence, primitive roots modulo 5 a	are 2, 3.	
Problem 2. (warmup, 2 points) Car	refully state Fermat's little theo	rem.
Solution. Let p be a prime, and support	se that $p \nmid a$. Then	
	$a^{p-1} \equiv 1 \pmod{p}.$	
Problem 3. (3 points) Determine wh	ether $31^{41} + 59^{26} + 53^5$ is divisible	ble by 5. Carefully show your steps!

Solution. $31^{41} + 59^{26} + 53^5 \equiv 1^{41} + (-1)^{26} + 3^5 \equiv 1 + 1 + 3 \equiv 0 \pmod{5}$. Hence, $31^{41} + 59^{26} + 53^5$ is divisible by 5. Note that $3^5 \equiv 3 \pmod{5}$ by Fermat's little theorem.

- (a) Find the modular inverse of 10 modulo 43.
- (b) Solve $10x \equiv 4 \pmod{43}$.

Solution.

(a) We use the extended euclidean algorithm:

 $\underbrace{\gcd(10, 43)}_{43=4\cdot10+3} = \underbrace{\gcd(3, 10)}_{10=3\cdot3+1} = \gcd(1, 3) = 1, \text{ and Bézout's identity takes the form } 1 = \underbrace{10 - 3 \cdot 3}_{3=43-4\cdot10} = 13 \cdot 10 - 3 \cdot 43.$ Hence, $13 \cdot 10 \equiv 1 \pmod{43}$. In other words, $10^{-1} \equiv 13 \pmod{43}$.

(b) $10x \equiv 4 \pmod{43}$ has the unique solution $x \equiv 10^{-1} \cdot 4 \equiv 13 \cdot 4 \equiv 9 \pmod{43}$.

Problem 5. (4 points) Solve the following system of congruences:

$$3x - y \equiv 1 \pmod{15}$$
$$x + 2y \equiv 4 \pmod{15}$$

Solution. By any method we like, we find that the two equations 3x - y = 1, x + 2y = 4 are solved by $x = \frac{6}{7}$, $y = \frac{11}{7}$ [For instance, $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ 1 & 2 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \frac{1}{7} \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \frac{1}{7} \begin{bmatrix} 6 \\ 11 \end{bmatrix}$.]

We note that $7^{-1} \equiv -2 \pmod{15}$.

Hence, our two congruences are solved by $\begin{bmatrix} x \\ y \end{bmatrix} \equiv \begin{bmatrix} 7^{-1} \cdot 6 \\ 7^{-1} \cdot 11 \end{bmatrix} \equiv \begin{bmatrix} -12 \\ -22 \end{bmatrix} \equiv \begin{bmatrix} 3 \\ 8 \end{bmatrix} \pmod{15}.$

Solution. $6^2 \equiv 2 \pmod{17}$, $6^4 \equiv 2^2 = 4 \pmod{17}$, $6^8 \equiv 4^2 \equiv -1 \pmod{17}$ Hence, $6^{13} = 6^8 \cdot 6^4 \cdot 6 \equiv -1 \cdot 4 \cdot 6 \equiv 10 \pmod{17}$.

Problem 7. (4+1 points)

(a) Find the smallest positive integer x simultaneously solving the three congruences $\begin{array}{c} x \equiv 1 \pmod{3}, \\ x \equiv 4 \pmod{7}, \\ x \equiv 1 \pmod{10}. \end{array}$ (b) The next largest solution x to the above congruences is

Solution. We break the problem into three pieces:

• $x \equiv 1 \pmod{3}, x \equiv 0 \pmod{7}, x \equiv 0 \pmod{10}$.

Since x has to be of the form x = 70z, we solve $70z \equiv 1 \pmod{3}$ and find z = 1. Hence, x = 70 does the trick.

• $x \equiv 0 \pmod{3}, x \equiv 1 \pmod{7}, x \equiv 0 \pmod{10}$.

Since x has to be of the form x = 30z, we solve $30z \equiv 1 \pmod{7}$ and find z = 4. Hence, x = 120 does the trick.

• $x \equiv 0 \pmod{3}, x \equiv 0 \pmod{7}, x \equiv 1 \pmod{10}$.

Since x has to be of the form x = 21z, we solve $21z \equiv 1 \pmod{10}$ and find z = 1. Hence, x = 21 does the trick.

(a) Combining these three, $x \equiv 1 \pmod{3}$, $x \equiv 4 \pmod{7}$, $x \equiv 1 \pmod{10}$ is solved by $x = 70 + 4 \cdot 120 + 21 = 571$.

The solution is unique modulo $3 \cdot 7 \cdot 10 = 210$, and $571 \equiv 151 \pmod{210}$. Hence, x = 151 is the smallest positive integer simultaneously solving the three congruences.

(b) 151 + 210 = 361 is the next largest solution.

(extra scratch paper)