Definition 128. The convergents C_k of $[a_0; a_1, a_2, ...]$ are the truncated continued fractions $C_0 = a_0$, $C_1 = [a_0; a_1]$, $C_2 = [a_0; a_1, a_2]$, $C_k = [a_0; a_1, a_2, a_3]$, ...

Theorem 129. The convergents C_k of $[a_0; a_1, a_2, ...]$ always converge to a value x in the following alternating fashion

$$C_0 < C_2 < C_4 < \cdots \quad x \quad \cdots < C_5 < C_3 < C_1.$$

We simply write $x = [a_0; a_1, a_2, ...]$ for that value.

If the continued fraction is finite, that is $x = [a_0; a_1, a_2, ..., a_n]$, then we only have the convergents $C_0, C_1, ..., C_n$. **Proof.** See Theorem 15.4 in our book for full details.

Example 130.

- (a) Evaluate the first 4 convergents of [2; 3, 2, 3, 2, ...].Then, using the next result, compute 3 more convergents.
- (b) Which number is represented by [2; 3, 2, 3, 2, ...]?

Solution.

(a) $C_0 = 2$ $C_1 = [2; 3] = 2 + \frac{1}{3} = \frac{7}{3} \approx 2.333$ $C_2 = [2; 3, 2] = 2 + \frac{1}{3 + \frac{1}{2}} = 2 + \frac{2}{7} = \frac{16}{7} \approx 2.286$ $C_3 = [2; 3, 2, 3] = 2 + \frac{1}{3 + \frac{1}{2 + \frac{1}{2}}} = \frac{55}{24} \approx 2.292$

Using the next result, we compute the convergents $C_n = \frac{p_n}{a_n}$ as follows:

n	-2	-1	0	1	2	3	4	5	6
a_n			2	3	2	3	2	3	2
p_n	0	1	2	7	16	55	126	433	992
q_n	1	0	1	3	7	24	55	189	433
C_n			2	7	16	55	126	433	992
			1	3	7	$\overline{24}$	55	189	$\overline{433}$

(b) Write x = [2; 3, 2, 3, 2, ...]. Then, $x = 2 + \frac{1}{3 + \frac{1}{2 + \frac{1}{3 + ...}}} = 2 + \frac{1}{3 + \frac{1}{x}}$.

The equation $x = 2 + \frac{1}{3 + \frac{1}{x}}$ simplifies to $x - 2 = \frac{x}{3x + 1}$. Further simplifies to (x - 2)(3x + 1) = x or $3x^2 - 6x - 2 = 0$, which has the solutions $x = \frac{6 \pm \sqrt{36 + 24}}{6} = 1 \pm \sqrt{\frac{5}{3}}$. Since $1 + \sqrt{\frac{5}{3}} \approx 2.291$ and $1 - \sqrt{\frac{5}{3}} \approx -0.291$, we conclude that $[2; 3, 2, 3, 2, ...] = 1 + \sqrt{\frac{5}{3}}$.

Advanced comment. The fractions $\frac{p_n}{q_n}$ are always reduced! Can you see how to conclude that $gcd(p_n, q_n) = 1$ from the relation $p_nq_{n-1} - p_{n-1}q_n = (-1)^n$ (which can be proved by induction)? We can see this relation quite nicely in the above table because $p_nq_{n-1} - p_{n-1}q_n$ is a 2×2 determinant taken from the rows containing p_n and q_n :

$$\begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} = -1, \quad \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} = 1, \quad \begin{vmatrix} 2 & 7 \\ 1 & 3 \end{vmatrix} = -1, \quad \begin{vmatrix} 7 & 16 \\ 3 & 7 \end{vmatrix} = 1, \quad \begin{vmatrix} 16 & 55 \\ 7 & 24 \end{vmatrix} = -1, \quad ..$$

Theorem 131. The kth convergent of the continued fraction $[a_0; a_1, a_2, ...]$ is

$$C_k = \frac{p_k}{q_k},$$

where p_k and q_k are characterized by

$$\begin{array}{ll} p_k = a_k p_{k-1} + p_{k-2} \\ \text{with } p_{-2} = 0, \quad p_{-1} = 1 \end{array} \quad \text{and} \quad \begin{array}{ll} q_k = a_k q_{k-1} + q_{k-2} \\ \text{with } q_{-2} = 1, \quad q_{-1} = 0 \end{array}.$$

Proof. We will prove the claim by induction on k.

First, we check the two base cases k = 0, k = 1 directly: $C_0 = a_0$ and $C_1 = a_0 + \frac{1}{a_1} = \frac{a_0a_1 + 1}{a_1}$. In other words, $p_0 = a_0$, $q_0 = 1$ and $p_1 = a_0a_1 + 1$, $q_1 = a_1$. This matches with the values from the recursion. Next, we assume that the theorem is true for k = 0, 1, ..., n. In particular,

$$C_n = [a_0; a_1, a_2, \dots, a_n] = \frac{p_n}{q_n} = \frac{a_n p_{n-1} + p_{n-2}}{a_n q_{n-1} + q_{n-2}}$$

for any values $a_0, a_1, ..., a_n$. Note that $C_{n+1} = [a_0; a_1, a_2, ..., a_n, a_{n+1}] = \left[a_0; a_1, a_2, ..., a_n + \frac{1}{a_{n+1}}\right]$. Replacing a_n with $a_n + \frac{1}{a_{n+1}}$, we therefore obtain

$$C_{n+1} = \left[a_0; a_1, a_2, \dots, a_n + \frac{1}{a_{n+1}}\right] = \frac{\left(a_n + \frac{1}{a_{n+1}}\right)p_{n-1} + p_{n-2}}{\left(a_n + \frac{1}{a_{n+1}}\right)q_{n-1} + q_{n-2}}$$
$$= \frac{(a_n a_{n+1} + 1)p_{n-1} + a_{n+1}p_{n-2}}{(a_n a_{n+1} + 1)q_{n-1} + a_{n+1}q_{n-2}}$$
$$= \frac{a_{n+1}(a_n p_{n-1} + p_{n-2}) + p_{n-1}}{a_{n+1}(a_n q_{n-1} + q_{n-2}) + q_{n-1}}$$
$$= \frac{a_{n+1}p_n + p_{n-1}}{a_{n+1}q_n + q_{n-1}} = \frac{p_{n+1}}{q_{n+1}},$$

which is what we had to prove.

Example 132. Express $\frac{5}{3}$ as a simple continued fraction. **Solution.** $\frac{5}{3} = 1 + \frac{2}{3} = 1 + \frac{1}{3/2} = 1 + \frac{1}{1 + \frac{1}{2}} = [1; 1, 2]$ Writing the final 2 as $1 + \frac{1}{1}$, we also have $\frac{5}{3} = 1 + \frac{1}{1 + \frac{1}{2}} = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}} = [1; 1, 1, 1]$. **More generally.** If $a_n > 1$, we always have $[a_0; a_1, a_2, ..., a_n] = [a_0; a_1, a_2, ..., a_n - 1, 1]$. **Comment.** Apart from these two variations, the simple continued fraction for $\frac{3}{5}$ is unique. Note that we are used to a similar ambiguity when dealing with terminating decimal expansions: for instance, 1.2500000... = 124999999... **A slight variation.** It follows from the above that $\frac{3}{5} = 0 + \frac{1}{5/3} = 0 + \frac{1}{1 + \frac{1}{1$

More generally, we always have that, if $x = [a_0; a_1, a_2, ...]$ with $a_0 > 0$, then $\frac{1}{x} = [0; a_0, a_1, a_2, ...]$.

Example 133. Express $\frac{43}{19}$ as a simple continued fraction. Solution. $\frac{43}{19} = 2 + \frac{5}{19} = 2 + \frac{1}{19/5} = 2 + \frac{1}{3 + \frac{4}{5}} = 2 + \frac{1}{3 + \frac{1}{5/4}} = 2 + \frac{1}{3 + \frac{1}{1 + \frac{1}{4}}} = [2; 3, 1, 4]$ Again, also, $\frac{43}{19} = [2; 3, 1, 4] = [2; 3, 1, 3 + \frac{1}{1}] = [2; 3, 1, 3, 1].$

Super important comment. We have done this computation before (in a different guise)! By the Euclidian algorithm: $43 = 2 \cdot 19 + 5$, $19 = 3 \cdot 5 + 4$, $5 = 1 \cdot 4 + 1$, $4 = 4 \cdot 1 + 0$.

Armin Straub straub@southalabama.edu