
Sketch of Lecture 11 Tue, 9/27/2016

Example 60. Every integer x is congruent to one of 0; 1; 2; 3; 4 modulo 5.
We therefore say that 0; 1; 2; 3; 4 form a complete set of residues modulo 5.
Another natural complete set of residues modulo 5 is: 0;�1;�2
A not so natural complete set of residues modulo 5 is: ¡5; 2; 4; 8; 16

Theorem 61. We can calculate with congruences.

� First of all, if a� b (modn) and b� c (modn), then a� c (modn).
In other words, being congruent is a transitive property.
Why? nj(b¡ a) and nj(c¡ b), then nj((b¡ a) + (c¡ b))

=c¡a

.

Alternatively, we can note that each of a; b; c leaves the same remainder when dividing by n.

� If a� b (modn) and c� d (modn), then

(a) a+ c� b+ d (modn)
Why? (b+ d)¡ (a+ c)= (b¡ a)+ (d¡ c) is indeed divisible by n
(because nj(b¡ a) and nj(d¡ c)).

(b) ac� bd (modn)
Why? bd¡ ac=(bd¡ bc)+ (bc¡ ac)= b(d¡ c)+ c(b¡ a) is indeed divisible by n
(because nj(b¡ a) and nj(d¡ c)).

(c) In particular, ak� bk (modn) for any positive integer k.

Example 62. Show that 41j220¡ 1.
Solution. In other words, we need to show that 220� 1 (mod41).
25= 32�¡9 (mod41). Hence, 220= (25)4� (¡9)4= 812� (¡1)2=1 (mod41).

Example 63. (but careful!) If a� b (modn), then ac� bc (modn) for any integer c.
However, the converse is not true! We can have ac � bc (mod n) without a � b (mod n)
(even assuming that c�/ 0).
For instance. 2 � 4� 2 � 1 (mod6) but 4�/ 1 (mod6)
However. 2 � 4� 2 � 1 (mod6) means 2 � 4=2 � 1+ 6m. Hence, 4= 1+3m, or, 4� 1 (mod3).

Similarly, ab� 0 (modn) does not always imply that a� 0 (modn) or b� 0 (modn).
For instance. 4 � 15� 0 (mod6) but 4�/ 0 (mod6) and 15�/ 0 (mod6)

These issues do not occur when n is a prime, as the next results shows.

Lemma 64. Let p be a prime.

(a) If ab� 0 (mod p), then a� 0 (mod p) or b� 0 (mod p).

(b) Suppose c�/ 0 (mod p). If ac� bc (mod p), then a� b (mod p).

Proof.

(a) This statement is equivalent to Lemma 49.

(b) ac� bc (mod p) means that p divides ac¡ bc=(a¡ b)c.
Since p is a prime, it follows that pj(a¡ b) or pjc.
In the latter case, c� 0 (mod p), which we excluded. Hence, pj(a¡ b). That is, a� b (mod p). �
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Example 65. Let n> 0 be an integer. Prove the following divisibility statements:

(a) 8j52n+7 (b) 15j24n¡ 1

Solution. Previously, we used induction (see Homework #2). Now, we can prove these directly:

(a) 52n= 25n� 1n=1 (mod8). Hence, 52n+7� 1+ 7� 0 (mod8). That is, 8j52n+7.

(b) 24n¡ 1= 16n¡ 1� 1n¡ 1=0 (mod15). That is, 15j24n¡ 1.

Example 66. Which are the possible remainders that the square of an integer leaves upon
division by 5?
Solution. We consider the following 5 cases:

� If x� 0 (mod5), then x2� 0 (mod5).

� If x� 1 (mod5), then x2� 1 (mod5).

� If x� 2 (mod5), then x2� 4 (mod5).

� If x� 3 (mod5), then x2� 9� 4 (mod5).

� If x� 4 (mod5), then x2� 16� 1 (mod5).

Hence, the possible remainders are 0; 1; 4.
Comment. We can see why we are getting (apart from 0) only exactly half of the possible residues, if, instead
of 0; 1; 2; 3; 4, we choose 0;�1;�2 as our complete set of residues: if x��1 (mod5), then x2� 1 (mod5),
and if x��2 (mod5), then x2� 4 (mod5).

Example 67. Which are the possible remainders that the fourth power of an integer leaves
upon division by 5? In other words, what are the possible values of x4 modulo 5?
Solution. We can through the same �ve cases as in the last example to �nd that the possible remainders
are only 0; 1. Alternatively, we can make our life easier by noting that x4 is the square of x2. Since x2 takes
the values 0; 1; 4 modulo 5, its square x4 takes the values 02; 12; 42� 1 modulo 5.
Comment. If x �/ 0 (mod 5), then we just saw that x4 � 1 (mod 5). The next, possibly surprising, result
states that this happens for every prime!

Theorem 68. (Fermat's little theorem) Let p be a prime, and suppose that p - a. Then

ap¡1� 1 (mod p):

Proof. The �rst p¡ 1 multiples of a,

a; 2a; 3a; :::; (p¡ 1)a

are all di�erent modulo p. (Otherwise, ra� sa (mod p) for some r; s 2 f1; 2; :::; p¡ 1g. Since p is prime,
this implies r� s (mod p).) Clearly, none of them is divisible by p.
Consequently, these values must be congruent (in some order) to the values 1; 2; :::; p¡ 1 modulo p. Thus,

a � 2a � 3a � ::: � (p¡ 1)a� 1 � 2 � 3 � ::: � (p¡ 1) (mod p):

Cancelling the common factors (allowed because p is prime!), we get ap¡1� 1 (mod p). �

Remark. The �little� in this theorem's name is to distinguish this result from Fermat's last theorem that
xn+ yn= zn has no integer solutions if n> 2 (only recently proved by Wiles).
Comment. An alternative proof based on induction is given in the book (bottom of page 88).
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