
Sketch of Lecture 6 Thu, 9/1/2016

Example 29. The fraction x(x2+2)

3
is an integer for all x2Z.

Proof. Since we are dividing by 3, it is natural to distinguish the three cases x=3q, x=3q+1, x=3q+2
and to consider the remainder of x(x2+2) when dividing by 3.
If x=3q, then x(x2+2)=3q(9q2+2) leaves remainder 0.
If x=3q+1, then x(x2+2)= (3q+1)(9q2+6q+3) leaves remainder 0.

If x=3q+2, then x(x2+2)= (3q+1)(9q2+ 12q+6) leaves remainder 0.
Thus, for any integer x, x(x2+2) is divisible by 3. �

2.2 Greatest common divisor

De�nition 30. Let a; b2Z and a=/ 0. We write ajb (and say b is divisible by a) if b

a
2Z.

In other words, ajb if and only if there exists an integer c such that ac= b.

Example 31. 3j9 but 3 - 10.

De�nition 32. Let a; b 2 Z (not both zero). The greatest common divisor gcd(a; b) of a
and b is the largest positive integer c such that cja and cjb.

Example 33.

(a) gcd(2; 4)= 2

(b) gcd(2; 6)= 2

(c) gcd(15; 28)= 1

(d) gcd(12; 42)= gcd(22 � 3; 2 � 3 � 7)=6

(e) gcd(140; 2016)= gcd(22 � 5 � 7; 25 � 32 � 7)= 22 � 7= 28

BAD?! Computing gcd(a; b) by factoring a and b is not a good approach. Though small numbers might be
easy to factor, it is very hard to factor even moderately large numbers in general.
Indeed, until 2007, the NSA o�ered cash prizes up to 200,000 USD for factoring large numbers (20,000 USD
collected in 2005 for factoring a number with 193 decimal digits; 232 decimal digits factored in 2009, larger
ones remain unfactored; largest one has 617 decimal digits).
The reason the NSA, among others, is interested in factoring is that the di�culty of factoring is actually
crucially used in many cryptosystems.

Lemma 34. If a= qb+ r, then gcd(a; b)= gcd(b; r).
Proof. Let d2N. We claim that dja and djb i� djr and djb. [i� is short for �if and only if�]

�=)�: djr because r

d
=
a¡ qb

d
=
a

d
¡ qb

d
is an integer (since dja and djb).

�(=�: dja because a

d
=
qb+ r

d
=
qb

d
+

r

d
is an integer (since djb and djr). �

Example 35. Using this lemma to compute gcd's is refered to as the Euclidean algorithm.

(a) gcd(30; 108)
108=3�30+18

= gcd(18; 30)
30=1�18+12

= gcd(12; 18)
18=1�12+6

= gcd(6; 12)
12=2�6+0

= gcd(0; 6)= 6

(b) gcd(15; 28)
28=1�15+13

= gcd(13; 15)
15=1�13+2

= gcd(2; 13)
13=6�2+1

= gcd(1; 2)=1
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Theorem 36. (Bézout's identity) Let a;b2Z (not both zero). There exist x; y2Z such that

gcd(a; b)= ax+ by:

Proof. We proceed iteratively:

a = q1 b+ r1; 0<r1<b

b = q2 r1+ r2; 0<r2<r1

r1 = q3 r2+ r3; 0<r3<r2
���

rn¡3 = qn¡1 rn¡2+ rn¡1; 0<rn¡1<rn¡2

rn¡2 = qn rn¡1+ rn; 0<rn<rn¡1

rn¡1 = qn+1 rn+0

Along the way, we have gcd(a; b) = gcd(b; r1) = gcd(r1; r2) = :::= gcd(rn¡2; rn¡1) = gcd(rn¡1; rn) = rn
(why is it obvious that the last gcd is rn?).
By the second-to-last equation, gcd(a; b)= rn= rn¡2¡ qnrn¡1 is a linear combination of rn¡2 and rn¡1.
Then, moving one up, we replace rn¡1 with rn¡3¡ qn¡1rn¡2 to write gcd(a; b) as a linear combination
of rn¡3 and rn¡2. Continuing in that fashion, we ultimately obtain gcd(a; b) as a linear combination of a
and b. �

Corollary 37. Let a; b2Z (not both zero). Then the set

T = fax+ by : x; y 2Zg

is precisely the set of all multiples of d= gcd(a; b).
Proof. �multiples of d � T �: Our previous theorem says that we can write d= ax+ by, which means that
d2T . It also means that every multiple nd is in T because nd= a � (nx)+ b � (ny).
�T �multiples of d�: On the other hand, let t= ax+ by be any element of T . Since dja and djb, we have
djt. That is, the element t is necessarily a multiple of d. �

Example 38. Let us revisit the previous example to illustrate how the Euclidean algorithm
provides us with a way to write gcd(a; b) as an integer linear combination of a and b.

(a) gcd(30; 108)
108=3�30+18

= gcd(18; 30)
30=1�18+12

= gcd(12; 18)
18=1�12+6

= gcd(6; 12)
12=2�6+0

= gcd(0; 6)= 6

Trace back: 6= 18¡ 1 � 12
12=30¡18

=¡1 � 30+2 � 18
18=108¡3�30

=2 �108¡ 7 � 30

(b) gcd(15; 28)
28=1�15+13

= gcd(13; 15)
15=1�13+2

= gcd(2; 13)
13=6�2+1

= gcd(1; 2)=1

Trace back: 1= 13¡ 6 � 2
2=15¡13

=¡6 �15+7 � 13
13=28¡15

=7 � 28¡ 13 �15

Armin Straub
straub@southalabama.edu

9


