
Please print your name:

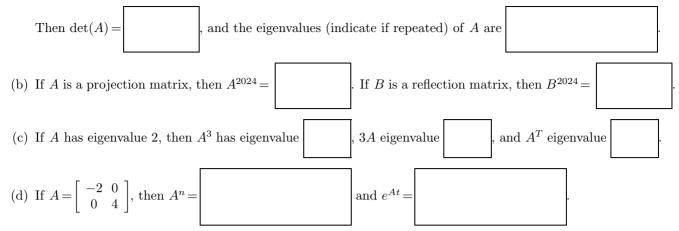
No notes, calculators or tools of any kind are permitted. There are 30 points in total. You need to show work to receive full credit.

Good luck!

Problem 1. (8 points) Solve the initial value problem $\mathbf{y}' = \begin{bmatrix} 1 & 3 \\ -1 & 5 \end{bmatrix} \mathbf{y}, \quad \mathbf{y}(0) = \begin{bmatrix} 2 \\ 0 \end{bmatrix}.$

Problem 2. (1+4+1 points) Consider the sequence a_n defined by $a_{n+2} = a_{n+1} + 2a_n$ and $a_0 = 1$, $a_1 = 8$.

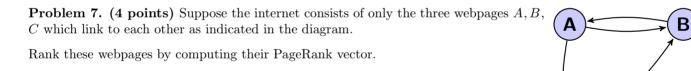
Problem 3. (2 points) Let A be the 3×3 matrix for reflecting through the plane spanned by the vectors $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\1\\3 \end{bmatrix}$. Determine an orthogonal matrix P and a diagonal matrix D such that $A = PDP^{T}$.


Problem 4. (1+1+2 points) Fill in the blanks.

(a) An example of a 2×2 matrix with eigenvalue $\lambda=5$ that is not diagonalizable is

- (b) If $N^3 = 0$, then $e^{Nt} =$
- (c) How many different Jordan normal forms are there in the following cases?
 - A 4×4 matrix with eigenvalues 2, 5, 5, 5?
 - A 8×8 matrix with eigenvalues 1, 1, 2, 2, 4, 4, 4, 4?

Problem 5. (4 points) Fill in the blanks.


(a) Let A be the 4×4 matrix for orthogonally projecting onto a 2-dimensional subspace of \mathbb{R}^4 .

Problem 6. (2 points) Convert the third-order differential equation

$$y''' = 6y'' - 3y' - 10y, \quad y(0) = 1, \quad y'(0) = 2, \quad y''(0) = 3$$

to a system of first-order differential equations.

PageRank vector:

. Ranking of websites:

Armin Straub straub@southalabama.edu (extra scratch paper)