Good luck!

Problem 1. (8 points) Solve the initial value problem $\quad \boldsymbol{y}^{\prime}=\left[\begin{array}{cc}1 & 3 \\ -1 & 5\end{array}\right] \boldsymbol{y}, \quad \boldsymbol{y}(0)=\left[\begin{array}{l}2 \\ 0\end{array}\right]$.

Solution.

- $A=\left[\begin{array}{cc}1 & 3 \\ -1 & 5\end{array}\right]$ has characteristic polynomial $(1-\lambda)(5-\lambda)+3=\lambda^{2}-6 \lambda+8=(\lambda-2)(\lambda-4)$.

Hence, the eigenvalues of A are 2, 4 .
The 4-eigenspace null $\left(\left[\begin{array}{ll}-3 & 3 \\ -1 & 1\end{array}\right]\right)$ has basis $\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
The 2-eigenspace null $\left(\left[\begin{array}{ll}-1 & 3 \\ -1 & 3\end{array}\right]\right)$ has basis $\left[\begin{array}{l}3 \\ 1\end{array}\right]$.
Hence, $A=P D P^{-1}$ with $P=\left[\begin{array}{ll}1 & 3 \\ 1 & 1\end{array}\right]$ and $D=\left[\begin{array}{ll}4 & \\ & 2\end{array}\right]$.

- Finally, we compute the solution $\boldsymbol{y}(t)=e^{A t} \boldsymbol{y}_{0}$:

$$
\begin{aligned}
\boldsymbol{y}(t) & =\underbrace{}_{\left[\begin{array}{cc}
e^{4 t} & 3 e^{2 t} \\
e^{4 t} & e^{2 t}
\end{array}\right]} \begin{aligned}
& P e^{D t} P^{-1} \boldsymbol{y}_{0} \\
&=\left[\begin{array}{ll}
1 & 3 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
e^{4 t} & \\
& e^{2 t}
\end{array}\right] \\
&\left(-\frac{1}{2}\right)\left[\begin{array}{cc}
1 & -3 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
0
\end{array}\right]
\end{aligned}=\left[\begin{array}{c}
3 e^{2 t}-e^{4 t} \\
e^{2 t}-e^{4 t}
\end{array}\right]
\end{aligned}
$$

Problem 2. ($\mathbf{1}+\mathbf{4}+\mathbf{1}$ points) Consider the sequence a_{n} defined by $a_{n+2}=a_{n+1}+2 a_{n}$ and $a_{0}=1, a_{1}=8$.
(a) The next two terms are $a_{2}=\square$ and $a_{3}=\square$.
(b) A Binet-like formula for a_{n} is $a_{n}=\square$, and $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\square$.

Solution.

(a) $a_{2}=10, a_{3}=26$
(b) The recursion can be translated to $\left[\begin{array}{l}a_{n+2} \\ a_{n+1}\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right]\left[\begin{array}{c}a_{n+1} \\ a_{n}\end{array}\right]$.

The eigenvalues of $\left[\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right]$ are $2,-1$.
Hence, $a_{n}=\alpha_{1} 2^{n}+\alpha_{2}(-1)^{n}$ and we only need to figure out the two unknowns α_{1}, α_{2}. We can do that using the two initial conditions: $a_{0}=\alpha_{1}+\alpha_{2}=1, a_{1}=2 \alpha_{1}-\alpha_{2}=8$.
Solving, we find $\alpha_{1}=3$ and $\alpha_{2}=-2$ so that, in conclusion, $a_{n}=3 \cdot 2^{n}-2(-1)^{n}$.
It follows from the Binet-like formula that $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=2$.
Problem 3. (2 points) Let A be the 3×3 matrix for reflecting through the plane spanned by the vectors $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$, $\left[\begin{array}{l}0 \\ 1 \\ 3\end{array}\right]$.
Determine an orthogonal matrix P and a diagonal matrix D such that $A=P D P^{T}$.

Solution. The normal direction is spanned by $\left[\begin{array}{c}0 \\ -3 \\ 1\end{array}\right]$.
Normalizing all vectors, we can choose $P=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 / \sqrt{10} & -3 / \sqrt{10} \\ 0 & 3 / \sqrt{10} & 1 / \sqrt{10}\end{array}\right]$ and $D=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right]$.

Problem 4. ($\mathbf{1}+\mathbf{1}+\mathbf{2}$ points) Fill in the blanks.
(a) An example of a 2×2 matrix with eigenvalue $\lambda=5$ that is not diagonalizable is
(b) If $N^{3}=\mathbf{0}$, then $e^{N t}=$ \square
(c) How many different Jordan normal forms are there in the following cases?

- A 4×4 matrix with eigenvalues $2,5,5,5$? \square
- A 8×8 matrix with eigenvalues $1,1,2,2,4,4,4,4$? \square

Solution.

(a) An example of a 2×2 matrix with eigenvalue $\lambda=5$ that is not diagonalizable is $\left[\begin{array}{ll}5 & 1 \\ 0 & 5\end{array}\right]$. (This is a Jordan block!)
(b) If $N^{3}=\mathbf{0}$, then $e^{N t}=I+N t+\frac{1}{2} N^{2} t^{2}$.
(c) $1 \cdot 3=3$ and $2 \cdot 2 \cdot 5=20$ different Jordan normal forms.

Problem 5. (4 points) Fill in the blanks.
(a) Let A be the 4×4 matrix for orthogonally projecting onto a 2-dimensional subspace of \mathbb{R}^{4}. Then $\operatorname{det}(A)=\square$, and the eigenvalues (indicate if repeated) of A are \square.
(b) If A is a projection matrix, then $A^{2024}=\square$. If B is a reflection matrix, then $B^{2024}=\square$.
(c) If A has eigenvalue 2 , then A^{3} has eigenvalue
 $3 A$ eigenvalue
 and A^{T} eigenvalue \square
(d) If $A=\left[\begin{array}{cc}-2 & 0 \\ 0 & 4\end{array}\right]$, then $A^{n}=\square$ and $e^{A t}=\square$.

Solution.

(a) $\operatorname{det}(A)=0$, and the eigenvalues of A are $0,0,1,1$.
(b) If A is a projection matrix, then $A^{2024}=A$. (Because $A^{2}=A$.)

If B is a reflection matrix, then $B^{2024}=I .\left(\right.$ Because $\left.B^{2}=I.\right)$
(c) If A has eigenvalue 2 , then A^{3} has eigenvalue $2^{3}=8,3 A$ eigenvalue $3 \cdot 2=6$, and A^{T} eigenvalue 2 .
(d) If $A=\left[\begin{array}{cc}-2 & 0 \\ 0 & 4\end{array}\right]$, then $A^{n}=\left[\begin{array}{ll}(-2)^{n} & \\ & 4^{n}\end{array}\right]$ and $e^{A t}=\left[\begin{array}{ll}e^{-2 t} & \\ & e^{4 t}\end{array}\right]$.

Problem 6. (2 points) Convert the third-order differential equation

$$
y^{\prime \prime \prime}=6 y^{\prime \prime}-3 y^{\prime}-10 y, \quad y(0)=1, \quad y^{\prime}(0)=2, \quad y^{\prime \prime}(0)=3
$$

to a system of first-order differential equations.

Solution. Write $y_{1}=y, y_{2}=y^{\prime}$ and $y_{3}=y^{\prime \prime}$.
Then, $y^{\prime \prime \prime}=6 y^{\prime \prime}-3 y^{\prime}-10 y$ translates into the first-order system $\left\{\begin{array}{l}y_{1}^{\prime}=y_{2} \\ y_{2}^{\prime}=y_{3} \\ y_{3}^{\prime}=-10 y_{1}-3 y_{2}+6 y_{3}\end{array}\right.$.
In matrix form, this is $\boldsymbol{y}^{\prime}=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -10 & -3 & 6\end{array}\right] \boldsymbol{y}, \quad \boldsymbol{y}(0)=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$.

Problem 7. (4 points) Suppose the internet consists of only the three webpages A, B, C which link to each other as indicated in the diagram.

Rank these webpages by computing their PageRank vector.

Solution. Let a_{t} be the probability that we will be on page A at time t. Likewise, b_{t}, c_{t} are the probabilities that we will be on page B or C.

We obtain the following transition behaviour:

$$
\left[\begin{array}{c}
a_{t+1} \\
b_{t+1} \\
c_{t+1}
\end{array}\right]=\left[\begin{array}{c}
0 \cdot a_{t}+1 \cdot b_{t}+0 \cdot c_{t} \\
\frac{1}{2} \cdot a_{t}+0 \cdot b_{t}+1 \cdot c_{t} \\
\frac{1}{2} \cdot a_{t}+0 \cdot b_{t}+0 \cdot c_{t}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
\frac{1}{2} & 0 & 1 \\
\frac{1}{2} & 0 & 0
\end{array}\right]\left[\begin{array}{c}
a_{t} \\
b_{t} \\
c_{t}
\end{array}\right]
$$

To find the equilibrium state, we again determine an appropriate 1-eigenvector.
The 1-eigenspace is null $\left(\left[\begin{array}{ccc}-1 & 1 & 0 \\ \frac{1}{2} & -1 & 1 \\ \frac{1}{2} & 0 & -1\end{array}\right]\right)$ which has basis $\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]$.
The corresponding equilibrium state is $\frac{1}{5}\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]$. This is the PageRank vector.
In other words, after browsing randomly for a long time, there is (about) a $\frac{2}{5}=40 \%$ chance to be at page A, a $\frac{2}{5}=40 \%$ chance to be at page B, and a $\frac{1}{5}=20 \%$ chance to be at page C.

We therefore rank A and B highest (tied), and C lowest.

