Midterm #1

Please print your name:

No notes, calculators or tools of any kind are permitted. There are 29 points in total. You need to show work to receive full credit.

Good luck!

Problem 1. (6 points)

- (a) Find the least squares solution to $\begin{bmatrix} 1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} \boldsymbol{x} = \begin{bmatrix} 2 \\ 4 \\ -1 \\ 2 \end{bmatrix}.$
- (b) Determine the least squares line for the data points (-1, 2), (0, 4), (1, -1), (1, 2).

Problem 2. (8 points)

- (a) Using Gram–Schmidt, obtain an orthonormal basis for $W = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix} \right\}$. (b) Determine the orthogonal projection of $\begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$ onto W. (c) Determine the QR decomposition of the matrix $A = \begin{bmatrix} 1 & 3 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$.

Problem 3. (3 points) We want to find values for the parameters a, b, c such that $z = ax^2 + b + \frac{c}{y}$ best fits some given points $(x_1, y_1, z_1), (x_2, y_2, z_2), \ldots$ Set up a linear system such that $[a, b, c]^T$ is a least squares solution.

Problem 5. (9 points) Fill in the blanks.

(extra scratch paper)