Good luck!

Problem 1. (6 points)

(a) Find the least squares solution to $\left[\begin{array}{cc}1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 1\end{array}\right] x=\left[\begin{array}{c}2 \\ 4 \\ -1 \\ 2\end{array}\right]$.
(b) Determine the least squares line for the data points $(-1,2),(0,4),(1,-1),(1,2)$.

Problem 2. (8 points)

(a) Using Gram-Schmidt, obtain an orthonormal basis for $W=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right]\right\}$.
(b) Determine the orthogonal projection of $\left[\begin{array}{c}2 \\ -1 \\ 0\end{array}\right]$ onto W.
(c) Determine the $Q R$ decomposition of the matrix $A=\left[\begin{array}{ll}1 & 3 \\ 0 & 1 \\ 1 & 1\end{array}\right]$.

Problem 3. (3 points) We want to find values for the parameters a, b, c such that $z=a x^{2}+b+\frac{c}{y}$ best fits some given points $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right), \ldots$ Set up a linear system such that $[a, b, c]^{T}$ is a least squares solution.

Problem 4. (3 points) Let $A=\left[\begin{array}{llll}1 & 4 & 0 & 2 \\ 0 & 0 & 1 & 3\end{array}\right]$.
(a) A basis for $\operatorname{null}(A)$ is \square A basis for $\operatorname{col}(A)$ is
(b) $\operatorname{dim} \operatorname{col}(A)=\square, \quad \operatorname{dim} \operatorname{row}(A)=\square, \quad \operatorname{dim} \operatorname{null}(A)=\square, \quad \operatorname{dim} \operatorname{null}\left(A^{T}\right)=\square$

Problem 5. (9 points) Fill in the blanks.
(a) Suppose that A is a symmetric 2×2 matrix with 4 -eigenvector $\left[\begin{array}{l}3 \\ 1\end{array}\right]$ and $\operatorname{det}(A)=2$.

Then A has

[Don't select a multiple of the given eigenvector.]
(b) If A is a 4×8 matrix with rank 3 , then $\operatorname{dim} \operatorname{row}(A)=$

(c) $\hat{\boldsymbol{x}}$ is a least squares solution of $A \boldsymbol{x}=\boldsymbol{b}$ if and only if \square
(d) By definition, a matrix Q is orthogonal if and only if
(e) If Q is orthogonal, then $\operatorname{det}(Q)$ is \square
(f) The linear system $A \boldsymbol{x}=\boldsymbol{b}$ is consistent if and only if \boldsymbol{b} is orthogonal to

(g) $\operatorname{col}(A)$ is the orthogonal complement of \square $\operatorname{null}(A)$ is the orthogonal complement of

(h) The projection matrix for orthogonally projecting onto $\operatorname{col}(A)$ is \square
If A has orthonormal columns, this simplifies to \square
(i) If W is the subspace of \mathbb{R}^{7} of all solutions to $x_{1}-x_{4}-3 x_{7}=0$, then
 , $\operatorname{dim} W^{\perp}=\square$

