Sketch of Lecture 38 Mon, 4/24/2023

| Linear transformations

Throughout, V' and W are vector spaces.

Just like we went from column vectors to abstract vectors (such as polynomials), the concept of a matrix leads
to abstract linear transformations.

In the other direction, picking a basis, abstract vectors can be represented as column vectors (see Lecture 35).
Correspondingly, linear transformations can then be represented as matrices.

Definition 187. A map T:V — W is a linear transformation if
T(cx+dy)=cT(x)+dT(y) forall z,yinV and all ¢,d in R.

In other words, a linear transformation respects addition and scaling:

o T(x+y)=T(x)+T(y)

o T(cx)=cT(x)

It necessarily sends the zero vector in V' to the zero vector in W:

e T(0)=0 [because T(0)=T(0-0)=0-T7(0)=0]
Comment. Linear transformations are special functions and, hence, can be composed. For instance, if T:V — W
and S: U — V are linear transformations, then 7' o S is a linear transformation U — W (sending @ to T'(S(x))).
If S, T are represented by matrices A, B, then T o S is represented by the matrix BA. In other words, matrix
multiplication arises as the composition of (linear) functions.

Example 188. The derivative you know from Calculus | is linear.

space of all space of all
Indeed, the map D: < differentiable { ?unctions } defined by f(x)+ f’(z) is a linear transformation:
functions

o D(f(z)+g(z))=D(f(x)) + D(9(x))
(f (@) T g(2))’ ) g'lx)

e D(cf(z))=cD(f(x))
(cflw)) cf’(z)
These are among the first properties you learned about the derivative.

Similarly, the integral you love from Calculus Il is linear:

[ U@+ g@pae= [“rwar+ [Co@ar,  [Cer@ar=e[ s

space of all b
In this form, we are looking at a map 7": ¢ continuous p — R defined by T'(f(x)) :/ f(z)da.
functions @

Example 189. Consider the space V' of all polynomials p(x) of degree 3 or less. The map D:
V — V given by p(x) — p’(x) is a linear. Write down the matrix M for this linear map with

respect to the basis 1, z, 22, z3.
010 o]
. _lo0o02o0
Solution. M = 00 0 3
0000

For instance, the 3rd column says that 22 (the 3rd basis element) gets sent to 0-14+2-2 4022+ 0- 23 = 2z.
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Example 190. Consider the map

. J space of poly’s space of poly’s )
D: { of degree <3 } H{ of degree <2 [~ p(z)—p'(z).

Write down the matrix M for this linear map with respect to the bases 1, z, 22, 2% and 1, z, 22.

) 0100
Solution. M =| 00 2 0
000 3

For instance, the 3rd column says that 22 (the 3rd basis element) gets sent to 0-1+2-2 4022 =2x.

Example 191. What is the pseudo-inverse of the matrix M from the previous example? Interpret
0 O 0
[ 1 0 0 -|

your finding.
} is { 01/2 0 J
0 0 1/3

L 1 1 . .
The corresponding linear map sends 1 to =, = to 51:2 and z2 to §z3. That is, the pseudo-inverse computes the
antiderivative of each monomial.

010
Solution. (final answer only) The pseudo-inverse of[ 00 2
000

w oo

Comment. This is not surprising, since we are familiar from Calculus with the concepts of derivatives and
antiderivatives (or integrals), and that these are “pseudo” inverse to each other.

0100 [ 0 0 0 0 ]
.. . 0020 {:|1 o0 0 0
Comment. Similarly, the pseudo-inverse of 0003l o 12 0 o]
0000 0 0 1/3 0
. . 1 1 . .
Now, the corresponding linear map sends 1 to =, x to 51‘2, 22 to gzrg, and z3 to 0. That is, the pseudo-inverse

computes the antiderivative of each monomial, with the exception of 23 which gets send to 0 (its antiderivative
does not live in the space of polynomials of degree 3).

Example 192. (The April Fools’ Day “proof’ that 7 =4, cont’d)
In that “proof”’, we are constructing curves ¢,, with the property that ¢,, — ¢ where c is the circle. This convergence
can be understood, for instance, in the same sense ||¢,, — ¢|| — 0 with the norm introduced as we did for functions.
Since ¢, — ¢ we then wanted to conclude that perimeter(c,,) — perimeter(c), leading to 4 — 7.
However, in order to conclude from x,, — = that f(z,,) — f(z) we need that f is continuous (at x)!!

The “function” perimeter, however, is not continuous. In words, this means that (as we see in this example)
curves can be arbitrarily close, yet have very different arc length.

We can dig a little deeper: as you learned in Calculus I, the arc length of a function y = f(z) for = € [a, b] is

‘la/wxf%(dyf=ila/1+f%xfdm

Observe that this involves f’. Try to see why the operator D that sends f to f’ is not continuous with respect

to the distance induced by the norm
b 1/2
1= ( [ r@ras)
a

In words, two functions f and g can be arbitrarily close, yet have very different derivatives f’ and g’.

That's a huge issue in functional analysis, which is the generalization of linear algebra to infinite dimensional
spaces (like the space of all differentiable functions). The linear operators (“matrices”) on these spaces frequently
fail to be continuous.
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| How little we actually know!

Q: How fast can we solve N linear equations in N unknowns?

Estimated cost of Gaussian elimination:

[ m o« « ... x -‘ e to create the zeros below the first pivot:

k ko eee Xk = on the order of N2 operations
p

e if there are N pivots total:

= on the order of N - N2= N3 operations

1 .
e A more careful count places the cost at ~§N3 operations.

For large NN, it is only the N3 that matters.

It says that if N — 10N then we have to work 1000 times as hard.

Thatls not Optlma“ We can do better than Gaussian elimination:
e Strassen algorithm (1969): N'0&27 = N2-807

e Coppersmith-Winograd algorithm (1990): N?2:37°

e ... Stothers—Williams—Le Gall (2014): N2:373 (If N — 10N then we have to work 229 times as hard.)

Is N2+(a tiny bit) possible? We don’t know! (People increasingly suspect so.) (Better than N2 is impossible; why?)

Comment. The above algorithms actually are for computing matrix products. It can be shown that, if M (N)
is the cost for multiplying two N X N matrices, then N X [N systems can also be solved for cost on the order
of M(N). In other words, we don’t even know how costly it is to multiply two matrices.

Good news for applications:

e Matrices typically have lots of structure and zeros

which makes solving so much faster.
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Just for fun and curiousity!

Recall that we introduced the dimension of a vector space as the number of vectors in a/any basis.
In Calculus, on the other hand, you learn about curves (1-dimensional), surfaces (2-dimensional)
and solids (3-dimensional).

The reason that Linear Algebra is relevant for curved objects like surfaces is that locally these (typically) do look
flat (like a plane), so that our tools apply at least locally.

What should a 1.5 dimensional thing look like?

Something between a curve and a surface...

(Note that our linear algebra approach to dimension is not helpful.)

Here is a candidate.

VA DS 1= GO P e 1

Continuing this process, results in the Koch snowflake, a fractal:

e |ts perimeter is infinite!

Why? At each iteration, the perimeter gets multiplied by 4 /3.

e The table below indicates that its boundary has dimension logs(4) ~ 1.262!!

the effect of zooming in by a factor of 3

x3 d=1=logs(3)

X9 d=2=logs(9)

AT A x4 d=logs(4) ~ 1.262

Does this have any practical relevance? Surprisingly, yes!

Have you ever wondered why perimeters of countries are missing from wikipedia? Or, why the coastline of the
UK is listed as 11,000 miles by the UK mapping authority but 7,700 miles by the CIA Factbook?

Some of the fun can be found at: https://en.wikipedia.org/wiki/Coastline_paradox
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