Example 179. Find the best approximation of $f(x)=\sqrt{x}$ on the interval $[0,1]$ using a function of the form $y=a+b x$.
Important observation. The orthogonal projection of $f:[0,1] \rightarrow \mathbb{R}$ onto $\operatorname{span}\{1, x\}$ is not simply the projection onto 1 plus the projection onto x. That's because 1 and x are not orthogonal:

$$
\langle 1, x\rangle=\int_{0}^{1} t \mathrm{~d} t=\frac{1}{2} \neq 0
$$

Solution. To find an orthogonal basis for $\operatorname{span}\{1, x\}$, following Gram-Schmidt, we compute

$$
x-\binom{\text { projection of }}{x \text { onto } 1}=x-\frac{\langle x, 1\rangle}{\langle 1,1\rangle} 1=x-\frac{1}{2}
$$

Hence, $1, x-\frac{1}{2}$ is an orthogonal basis for $\operatorname{span}\{1, x\}$.
The orthogonal projection of \sqrt{x} on $[0,1]$ onto $\operatorname{span}\{1, x\}=\operatorname{span}\left\{1, x-\frac{1}{2}\right\}$ therefore is

$$
\frac{\langle\sqrt{x}, 1\rangle}{\langle 1,1\rangle} 1+\frac{\left\langle\sqrt{x}, x-\frac{1}{2}\right\rangle}{\left\langle x-\frac{1}{2}, x-\frac{1}{2}\right\rangle}\left(x-\frac{1}{2}\right)=\frac{\int_{0}^{1} \sqrt{t} \mathrm{~d} t}{\int_{0}^{1} 1 \mathrm{~d} t}+\frac{\int_{0}^{1} \sqrt{t}\left(t-\frac{1}{2}\right) \mathrm{d} t}{\int_{0}^{1}\left(t-\frac{1}{2}\right)^{2} \mathrm{~d} t}\left(x-\frac{1}{2}\right) .
$$

We compute the three new integrals:

$$
\begin{aligned}
\int_{0}^{1} \sqrt{t} \mathrm{~d} t & =\left[\frac{2}{3} t^{3 / 2}\right]_{0}^{1}=\frac{2}{3} \\
\int_{0}^{1} \sqrt{t}\left(t-\frac{1}{2}\right) \mathrm{d} t & =\int_{0}^{1}\left(t^{3 / 2}-\frac{1}{2} t^{1 / 2}\right) \mathrm{d} t=\left[\frac{2}{5} t^{5 / 2}-\frac{1}{3} t^{3 / 2}\right]_{0}^{1}=\frac{2}{5}-\frac{1}{3}=\frac{1}{15} \\
\int_{0}^{1}\left(t-\frac{1}{2}\right)^{2} \mathrm{~d} t & =\int_{0}^{1}\left(t^{2}-t+\frac{1}{4}\right) \mathrm{d} t=\left[\frac{1}{3} t^{3}-\frac{1}{2} t^{2}+\frac{1}{4} t\right]_{0}^{1}=\frac{1}{3}-\frac{1}{2}+\frac{1}{4}=\frac{1}{12}
\end{aligned}
$$

Using these values, the best approximation is

$$
\frac{\int_{0}^{1} \sqrt{t} \mathrm{~d} t}{\int_{0}^{1} 1 \mathrm{~d} t}+\frac{\int_{0}^{1} \sqrt{t}\left(t-\frac{1}{2}\right) \mathrm{d} t}{\int_{0}^{1}\left(t-\frac{1}{2}\right)^{2} \mathrm{~d} t}\left(x-\frac{1}{2}\right)=\frac{2}{3}+\frac{12}{15}\left(x-\frac{1}{2}\right)=\frac{4}{5} x+\frac{4}{15}
$$

The plot below confirms how good this linear approximation is (compare with the previous example):

