Sketch of Lecture 28 Mon, 3/27/2023

\ Extra: More details on the spectral theorem

Let us add (v, w) to our notations for the dot product: (v, w)=vIw=v-w.

e In our story of orthogonality, the important player has been the dot product. However, one could argue
that the fundamental quantity is actually the norm:

(v, w) :%(Hv—i—w”2 —|Jv —w||?). See Example 28.

e  Accepting the dot product as immensely important, we see that symmetric matrices (i.e. matrices A such
that A= AT) are of interest.

For every matrix A, (Av,w) = (v, ATw).
It follows that, a matrix A is symmetric if and only if (Av,w) = (v, Aw) for all vectors v, w.

e Similarly, let Q be an orthogonal matrix (i.e. Q is a square matrix with Q7Q =1).
Then, (Qu, Qw) = (v, w).
In fact, a matrix A is orthogonal if and only if (Av, Aw) = (v, w) for all vectors v, w.

Comment. We observed in Example 149 that orthogonal matrices () correspond to rotations (det Q =1)
or reflections (det Q = —1) [or products thereof]. The equality (Qv, Qw) = (v, w) encodes the fact that
these types (and only these!) of geometric transformations preserve angles and lengths.

(spectral theorem)

A n x n matrix A is symmetric if and only if it can be decomposed as A = PD P” where

e D is a diagonal matrix, (n x n)

The diagonal entries \; are the eigenvalues of A.

e P is orthogonal. (n xn)

The columns of P are eigenvectors of A.

Note that, in particular, A is always diagonalizable, the eigenvalues (and hence, the eigenvectors) are all real,
and, most importantly, the eigenspaces of A are orthogonal.

The “only if’ part says that, if A is symmetric, then we get a diagonalization A = PDPT. The “if’ part says
that, if A=PDP7, then A is symmetric (which follows from AT = (PDPT)T = (PT)TDTPT = PD PT = A).

Let us prove the following important parts of the spectral theorem.

Theorem 156.
(a) If Ais symmetric, then the eigenspaces of A are orthogonal.
(b) If Ais real and symmetric, then the eigenvalues of A are real.

Proof.

(a) We need to show that, if v and w are eigenvectors of A with different eigenvalues, then (v, w) =0.
Suppose that Av =A\v and Aw = pw with A% p.
Then, (v, w) = v, w) = (Av,w) = (v, ATw) = (v, Aw) = (v, pw) = p(v,w).
However, since A # i, A(v,w) = p(v,w) is only possible if (v, w)=0.

(b) Suppose A is a nonreal eigenvalue with nonzero eigenvector v. Then, ¥ is a A-eigenvector and, since
A£ X, we have two eigenvectors with different eigenvalues. By the first part, these two eigenvectors must
be orthogonal in the sense that v7v = 0. But ©’v = v*v = ||v||? # 0. This shows that it is impossible
to have a nonzero eigenvector for a nonreal eigenvalue. O
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Let us highlight the following point we used in our proof:

| Let A be a real matrix. If v is a \-eigenvector, then ¥ is a \-eigenvector.

See, for instance, Example 83. This is just a consequence of the basic fact that we cannot algebraically distinguish
between +¢ and —1.

Remark 157. (Pre-April Fools’ Day!) 7 is the perimeter of a circle —
enclosed in a square with edge length 1. The perimeter of the square [ d h \.
is 4, which approximates 7. To get a better approximation, we “fold” / \‘:ﬁ
the vertices of the square towards the circle (and get the blue polygon). { \
This construction can be repeated for even better approximations and, |
in the limit, our shape will converge to the true circle. At each step, the ‘\ ){."
perimeter is 4, so we conclude that =4, contrary to popular belief. |i\ /i
I Y P

Can you pin-point the fallacy in this argument?

Comment. We'll actually come back to this. It's related to linear algebra in

infinite dimensions.
Armin Straub 70

straub@southalabama.edu



