
Sketch of Lecture 28 Mon, 3/27/2023

Extra: More details on the spectral theorem

Let us add hv;wi to our notations for the dot product: hv;wi= vTw=v �w.

� In our story of orthogonality, the important player has been the dot product. However, one could argue
that the fundamental quantity is actually the norm:
hv;wi= 1

4
(kv+wk2¡kv¡wk2). See Example 28.

� Accepting the dot product as immensely important, we see that symmetric matrices (i.e. matrices A such
that A=AT) are of interest.
For every matrix A, hAv ;wi= hv ; ATwi.
It follows that, a matrix A is symmetric if and only if hAv ;wi= hv ; Awi for all vectors v;w.

� Similarly, let Q be an orthogonal matrix (i.e. Q is a square matrix with QTQ= I).
Then, hQv ; Qwi= hv;wi.
In fact, a matrix A is orthogonal if and only if hAv; Awi= hv ;wi for all vectors v ;w.
Comment. We observed in Example 149 that orthogonal matrices Q correspond to rotations (detQ=1)
or reflections (detQ=¡1) [or products thereof]. The equality hQv; Qwi= hv ;wi encodes the fact that
these types (and only these!) of geometric transformations preserve angles and lengths.

(spectral theorem)
A n�n matrix A is symmetric if and only if it can be decomposed as A=PDPT , where

� D is a diagonal matrix, (n�n)

The diagonal entries �i are the eigenvalues of A.

� P is orthogonal. (n�n)

The columns of P are eigenvectors of A.

Note that, in particular, A is always diagonalizable, the eigenvalues (and hence, the eigenvectors) are all real,
and, most importantly, the eigenspaces of A are orthogonal.
The �only if� part says that, if A is symmetric, then we get a diagonalization A = PDPT . The �if� part says
that, if A=PDPT , then A is symmetric (which follows from AT =(PDPT)T =(PT)TDTPT =PDPT =A).

Let us prove the following important parts of the spectral theorem.

Theorem 156.

(a) If A is symmetric, then the eigenspaces of A are orthogonal.

(b) If A is real and symmetric, then the eigenvalues of A are real.

Proof.

(a) We need to show that, if v and w are eigenvectors of A with different eigenvalues, then hv;wi=0.
Suppose that Av=�v and Aw= �w with �=/ �.

Then, �hv;wi= h�v;wi= hAv ;wi= hv ; ATwi= hv ; Awi= hv; �wi= �hv;wi.
However, since �=/ �, �hv;wi= �hv;wi is only possible if hv;wi=0.

(b) Suppose � is a nonreal eigenvalue with nonzero eigenvector v. Then, v� is a ��-eigenvector and, since
�=/ ��, we have two eigenvectors with different eigenvalues. By the first part, these two eigenvectors must
be orthogonal in the sense that v�Tv = 0. But v�Tv = v�v = kvk2=/ 0. This shows that it is impossible
to have a nonzero eigenvector for a nonreal eigenvalue. �
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Let us highlight the following point we used in our proof:

Let A be a real matrix. If v is a �-eigenvector, then v� is a ��-eigenvector.

See, for instance, Example 83. This is just a consequence of the basic fact that we cannot algebraically distinguish
between +i and ¡i.

Remark 157. (Pre-April Fools' Day!) � is the perimeter of a circle
enclosed in a square with edge length 1. The perimeter of the square
is 4, which approximates �. To get a better approximation, we �fold�
the vertices of the square towards the circle (and get the blue polygon).
This construction can be repeated for even better approximations and,
in the limit, our shape will converge to the true circle. At each step, the
perimeter is 4, so we conclude that �=4, contrary to popular belief.

Can you pin-point the fallacy in this argument?
Comment. We'll actually come back to this. It's related to linear algebra in
infinite dimensions.
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