
Sketch of Lecture 26 Wed, 3/22/2023

Review.

� Let A be n�n. The matrix exponential is

eA= I +A+ 1
2!
A2+ 1

3!
A3+ ���

Then, d

dt
eAt=AeAt.

Why? d

dt
eAt=

d

dt

�
I +At+

1

2!
A2t2+

1

3!
A3t3+ ���

�
=A+

1

1!
A2t+

1

2!
A3t2+ ���=AeAt

� If A=PDP¡1, then eA=PeDP¡1.

� The solution to y 0=Ay, y(0)= y0 is y(t)= eAty0:

Why? Because y0(t)=AeAty0=Ay(t) and y(0)= e0Ay0= y0:

Example 141. The matrix exponential shares many other properties of the usual exponential:

� eAeB= eA+B= eBeA if AB=BA
Why the condition AB=BA? By the Taylor series, eA+B= I +(A+B)+

(A+B)2

2!
+ ::: In order

to simplify that to

eAeB=

�
I +A+

A2

2!
+ :::

��
I +B+

B2

2!
+ :::

�
;

we need that (A+B)2=A2+AB+BA+B2 is the same as A2+2AB+B2. That's only the case
if AB=BA.

� eA is invertible and (eA)¡1= e¡A

Why? That actually follows from the previous property.

Example 142. Compute eAt for A=
�
0 1
0

�
.

Solution. Note that A2=
�
0 0
0 0

�
. Hence, eAt= I +At+

t2

2!
A2+ :::= I +At=

�
1 t
1

�
.

Example 143. Compute eAt for A=
24 0 1 0

0 1
0

35.
Solution. Note that A2=

24 0 0 1
0 0
0

35 and A3=

24 0 0 0
0 0
0

35.
Hence, eAt=I+At+ t2

2!
A2+

t3

3!
A3+ :::=I+At+

1

2
A2t2=

24 1
1
1

35+
24 0 t 0

0 t
0

35+ 1

2

24 0 0 t2

0 0
0

35=
2664 1 t

t2

2
1 t

1

3775.

Example 144. Compute eAt for A=
�
2 1
2

�
.

Solution.

� Write A=
�
2 1
2

�
=2I +N with N =

�
0 1
0

�
. Note that 2I and N commute.

Hence, eAt= e2It+Nt= e2IteNt.

� Note that N2=
�
0 0
0 0

�
. Hence, eNt= I +Nt+

t2

2!
N2+ :::= I +Nt=

�
1 t
1

�
.

� Combined, eAt= e2It+Nt= e2IteNt=

"
e2t

e2t

#�
1 t
1

�
=

"
e2t te2t

e2t

#
.

Advanced. Can you show that An=
"
2n n2n¡1

2n

#
?
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Example 145. Solve the differential equation

y 0=
�
2 1
2

�
A

y ; y(0)=
�
¡1
1

�
y0

Solution. Repeating the work in the previous example, the solution to the differential equation is

y(t) = eAty0

= e2It+Nty0 with N =

�
0 1
0 0

�
= e2IteNty0 (because 2It and Nt commute)

=

"
e2t

e2t

#�
1+Nt+

1
2
(Nt)2+

1
3!
(Nt)3+ :::

�
y0

=

"
e2t

e2t

#
(1+Nt)y0 (because N2= 0)

=

"
e2t

e2t

#�
1 t
1

��
¡1
1

�

=

"
e2t

e2t

#�
t¡ 1
1

�
=

"
(t¡ 1)e2t

e2t

#
:

Check. We should verify that y1= (t¡ 1)e2t and y2= e2t satisfy y1
0 =2y1+ y2 and y2

0 =2y2.
Indeed, y1

0 = e2t+(t¡ 1)2e2t equals 2y1+ y2=2(t¡ 1)e2t+ e2t.

Comment. For applications, having solutions like te�t or t cos(�t) (when the eigenvalues are imaginary) is
connected to the phenomenon of resonance, which you may have already seen.
Important comment. Note that we can immediately see from the solution that the original matrix A is not
diagonalizable: there is a term te2t, whereas in the diagonalizable case we would only see exponentials like e2t

by themselves.
In our upcoming discussion of complex numbers we will see that e2it (here, 2i would be the eigenvalue) can be
rewritten in terms of cos(2t) and sin(2t). Both of these are periodic and bounded, so that the same is true for
every linear combination.
In that case, if the eigenvalue 2i was repeated in such a way that the matrixA is not diagonalizable, then we would
get the functions t cos(2t) and t sin(2t) in our solutions. These, however, are not bounded! This phenomenon
(getting solutions that are unbounded under the right/wrong circumstances) is called resonance.
https://en.wikipedia.org/wiki/Resonance

Understanding when resonance occurs is of crucial importance for practical applications.
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