Sketch of Lecture 16 Mon, 2/20/2023

Powers of matrices

Example 89. (warmup) Consider A:[ _02 g }
e What are the eigenspaces?

e What are A—! and A'%9? What is A™?

Solution.

° [ (1) } is a —2-eigenvector, and [ (1) } is a 3-eigenvector. In other words, the —2-eigenspace is span{{ (1) }}

and the 3-eigenspace is span{{ (1) }}
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Comment. Algebraically, the map v +— Av looks very simple. However, notice that it is not so easy to say what
3
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by —2, the other part is scaled by 3.

happens to, say, v :{ } geometrically. That is because two things are happening: part of the vector v is scaled

Example 90. If A has \-eigenvector v, then what can we say about A2%?

Solution. A2 has \%-eigenvector v.

[Indeed, A%v = A(Av) = A(Av) = AAv = \?v. This is even easier in words: multiplying v with A has the effect
of scaling it by \; hence, multiplying it with A? scales it by \?2]

Important comment. Similarly, A1%0 has \1%0-eigenvector v.

Example 91. If a matrix A can be diagonalized as A= PD P! what can we say about A"?
Solution. First, note that A= (PDP~1)(PDP~1')=PD?P~!. Likewise, A" = PD"P~ 1.
[The point being that D™ is trivial to compute because D is diagonal.]
In particular. A~'=pPD~1p—1
Important comment. In the previous example, we observed that, if A has \-eigenvector v, then A™ has \"-
eigenvector v. Note that this is also expressed in A” = PD™ P~ because the latter is a diagonalization of A™.
The diagonalization shows that A™ and A have the same eigenvectors (since we can use the same matrix P) and

that the eigenvalues of A™ are the n-th powers of the eigenvalues of A (which are the entries of the diagonal
matrix D).

(computing matrix powers) If A is a square matrix with diagonalization A= PD P~!, then

A= pDnp—1L,

Example 92. Let A= [ Z é } Compute A™.
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n_ np—1_[1 —11][ 107 [ 1 1]_1[1 -1 0™ 10™ | _1[ 10m+4-5" 10" —5"
At=pp"P _[4 1 M 5"]5[74 1]_5[4 1 ]{74-5" 1-5"}_5 4-10"—4-5" 4-10"+5"

Check. Verify the cases n =0 (A°=1) and n = 1.

Solution. First, we diagonalize: A= PDP~! with P:{ [ ] and D:[ 0 ] (Fill in the details!)
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Example 93. (extra) Let A=| 2 2 2 |. Determine A",
103

Solution. We first repeat our work from Example 17 to find a diagonalization of A:

By expanding by the second column, we find that the characteristic polynomial det(A — A1) is

4—-X 2

2
2 :(2—)\)‘
. 13-
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Hence, the eigenvalues are A =2 (with multiplicity 2) and A =5.

-1 0 2 RREF 10 -2 2

e A\=>5:null 2 -3 2 = null 01 —2 = span 2

1 0 -2 00 O 1

2 0 2 RREF 101 0 -1

e A\—=2:null 2 0 2 = null 000 = span 11,|] O

L1101 000 0 1
2 0 —1 500
We therefore have the diagonalization A=PDP~ ' with P=| 2 1 0 |[,D=|0 2 0
10 1 002

[Keep in mind that other choices for P and D exist.]

1 1 0 1
With some labor (do it!), we find P~1==| —2 3 —2
3 -1 0 2

It follows that

A" = pprp!

20 -1 5" 0 0 1 1 0 1
=121 0 0 2™ 0 3 -2 3 =2
10 1 0o 0 27 -1 0 2
1 2.5 0 —2" 1 0 1
=3 2-5™ 2" 0 -2 3 =2
5 0 27 -1 0 2

2.5" 42" 0 2.5"-2.2"
= 2| 2:5"—2.2" 3.2" 2.5"—2.2"
57 —2n 0 574227

w|

Check. Notice that it is particularly easy to verify the cases n =0 (A0 =I)and n=1.
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‘:(2—A)[(4—A)(3—>\) —2]=(2-X)2(5-\).
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