Powers of matrices

Example 89. (warmup) Consider $A = \begin{bmatrix} -2 & 0 \\ 0 & 3 \end{bmatrix}$.

- What are the eigenspaces?
- What are A^{-1} and A^{100} ? What is A^n ?

Solution.

- $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ is a -2-eigenvector, and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ is a 3-eigenvector. In other words, the -2-eigenspace is $\operatorname{span}\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ and the 3-eigenspace is $\operatorname{span}\left\{ \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$.
- $\bullet \quad A^{-1} \! = \! \left[\begin{array}{cc} -1/2 & 0 \\ 0 & 1/3 \end{array} \right] \text{ and } A^{100} \! = \! \left[\begin{array}{cc} (-2)^{100} & 0 \\ 0 & 3^{100} \end{array} \right] \! = \! \left[\begin{array}{cc} 2^{100} & 0 \\ 0 & 3^{100} \end{array} \right] \! . \text{ In general, } A^n \! = \! \left[\begin{array}{cc} (-2)^n & 0 \\ 0 & 3^n \end{array} \right] \! .$

Comment. Algebraically, the map $v \mapsto Av$ looks very simple. However, notice that it is not so easy to say what happens to, say, $v = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ geometrically. That is because two things are happening: part of the vector v is scaled by -2, the other part is scaled by 3.

Example 90. If A has λ -eigenvector \boldsymbol{v} , then what can we say about A^2 ?

Solution. A^2 has λ^2 -eigenvector \boldsymbol{v} .

[Indeed, $A^2v = A(Av) = A(\lambda v) = \lambda Av = \lambda^2 v$. This is even easier in words: multiplying v with A has the effect of scaling it by λ ; hence, multiplying it with A^2 scales it by λ^2 .]

Important comment. Similarly, A^{100} has λ^{100} -eigenvector ${m v}$.

Example 91. If a matrix A can be diagonalized as $A = PDP^{-1}$, what can we say about A^n ?

Solution. First, note that $A^2 = (PDP^{-1})(PDP^{-1}) = PD^2P^{-1}$. Likewise, $A^n = PD^nP^{-1}$.

[The point being that D^n is trivial to compute because D is diagonal.]

In particular. $A^{-1} = PD^{-1}P^{-1}$

Important comment. In the previous example, we observed that, if A has λ -eigenvector v, then A^n has λ^n -eigenvector v. Note that this is also expressed in $A^n = PD^nP^{-1}$, because the latter is a diagonalization of A^n . The diagonalization shows that A^n and A have the same eigenvectors (since we can use the same matrix P) and that the eigenvalues of A^n are the n-th powers of the eigenvalues of A (which are the entries of the diagonal matrix D).

(computing matrix powers) If A is a square matrix with diagonalization $A = PDP^{-1}$, then

$$A^n = PD^nP^{-1}$$

Example 92. Let $A = \begin{bmatrix} 6 & 1 \\ 4 & 9 \end{bmatrix}$. Compute A^n .

Solution. First, we diagonalize: $A = PDP^{-1}$ with $P = \begin{bmatrix} 1 & -1 \\ 4 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} 10 & \\ & 5 \end{bmatrix}$. (Fill in the details!)

$$A^n = PD^nP^{-1} = \begin{bmatrix} 1 & -1 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 10^n \\ 5^n \end{bmatrix} \frac{1}{5} \begin{bmatrix} 1 & 1 \\ -4 & 1 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 1 & -1 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 10^n & 10^n \\ -4 \cdot 5^n & 1 \cdot 5^n \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 10^n + 4 \cdot 5^n & 10^n - 5^n \\ 4 \cdot 10^n - 4 \cdot 5^n & 4 \cdot 10^n + 5^n \end{bmatrix}$$

Check. Verify the cases n=0 $(A^0=I)$ and n=1.

Example 93. (extra) Let
$$A = \begin{bmatrix} 4 & 0 & 2 \\ 2 & 2 & 2 \\ 1 & 0 & 3 \end{bmatrix}$$
. Determine A^n .

Solution. We first repeat our work from Example 17 to find a diagonalization of A: By expanding by the second column, we find that the characteristic polynomial $\det(A - \lambda I)$ is

$$\begin{vmatrix} 4-\lambda & 0 & 2\\ 2 & 2-\lambda & 2\\ 1 & 0 & 3-\lambda \end{vmatrix} = (2-\lambda) \begin{vmatrix} 4-\lambda & 2\\ 1 & 3-\lambda \end{vmatrix} = (2-\lambda)[(4-\lambda)(3-\lambda)-2] = (2-\lambda)^2(5-\lambda).$$

Hence, the eigenvalues are $\lambda = 2$ (with multiplicity 2) and $\lambda = 5$.

•
$$\lambda = 5$$
: null $\begin{pmatrix} -1 & 0 & 2 \\ 2 & -3 & 2 \\ 1 & 0 & -2 \end{pmatrix}$ $\stackrel{\text{RREF}}{=}$ null $\begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix}$ \Rightarrow span $\{ \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix} \}$

•
$$\lambda = 2$$
: null $\begin{pmatrix} 2 & 0 & 2 \\ 2 & 0 & 2 \\ 1 & 0 & 1 \end{pmatrix}$ $\stackrel{\text{RREF}}{=}$ null $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $=$ span $\{ \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \}$

We therefore have the diagonalization $A = PDP^{-1}$ with $P = \begin{bmatrix} 2 & 0 & -1 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$, $D = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$.

[Keep in mind that other choices for P and D exist.]

With some labor (do it!), we find $P^{-1} = \frac{1}{3} \begin{bmatrix} 1 & 0 & 1 \\ -2 & 3 & -2 \\ -1 & 0 & 2 \end{bmatrix}$.

It follows that

$$\begin{split} A^n &= PD^nP^{-1} \\ &= \begin{bmatrix} 2 & 0 & -1 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 5^n & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 2^n \end{bmatrix} \frac{1}{3} \begin{bmatrix} 1 & 0 & 1 \\ -2 & 3 & -2 \\ -1 & 0 & 2 \end{bmatrix} \\ &= \frac{1}{3} \begin{bmatrix} 2 \cdot 5^n & 0 & -2^n \\ 2 \cdot 5^n & 2^n & 0 \\ 5^n & 0 & 2^n \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ -2 & 3 & -2 \\ -1 & 0 & 2 \end{bmatrix} \\ &= \frac{1}{3} \begin{bmatrix} 2 \cdot 5^n + 2^n & 0 & 2 \cdot 5^n - 2 \cdot 2^n \\ 2 \cdot 5^n - 2 \cdot 2^n & 3 \cdot 2^n & 2 \cdot 5^n - 2 \cdot 2^n \\ 5^n - 2^n & 0 & 5^n + 2 \cdot 2^n \end{bmatrix}. \end{split}$$

Check. Notice that it is particularly easy to verify the cases n=0 ($A^0=I$) and n=1.