
Sketch of Lecture 15 Mon, 2/13/2023

Example 84. (review) In Example 17, we diagonalized A=

24 4 0 2
2 2 2
1 0 3

35 as A=PDP¡1.

We found that one choice for P and D is P =

24 2 0 ¡1
2 1 0
1 0 1

35, D=

24 5 0 0
0 2 0
0 0 2

35.
Spell out what that tells us about A!

Solution. The diagonal entries 5; 2; 2 of D are the eigenvalues of A.
The columns of P are corresponding eigenvectors of A.

�
24 2
2
1

35 is a 5-eigenvector of A (that is, A

24 2
2
1

35=5

24 2
2
1

35).

� The 2-eigenspace of A is 2-dimensional. A basis is

24 0
1
0

35;
24 ¡10

1

35.

The spectral theorem

Recall that a matrix A is symmetric if and only if AT =A.

Theorem 85. (spectral theorem, long version) Suppose A is a symmetric matrix.

� A is always diagonalizable.

� All eigenvalues of A are real.

� The eigenspaces of A are orthogonal.

Proof. We will prove (parts of) the spectral theorem later on. For now, we just appreciate that the spectral
theorem guarantees all these nice things to happen for symmetric matrices (for any specific A we know how to
determine whether A is diagonalizable and what its eigenspaces are).
Comment. The eigenspaces of A being orthogonal means that eigenvectors for different eigenvalues are always
orthogonal.
Important consequence. In the diagonalization A=PDP¡1, we can choose P to be orthogonal (in which case
P¡1=PT). In that case, the diagonalization takes the special form A=PDPT , where P is orthogonal and D
is diagonal.

(spectral theorem, compact version) A symmetric matrix A can always be diagonalized as
A=PDPT , where P is orthogonal and D is diagonal (and both are real).

How? We proceed as in the diagonalization A=PDP¡1. For a symmetric matrix A, we can arrange P to be
orthogonal, by normalizing its columns. If there is a repeated eigenvalue, then we also need to make sure to pick
an orthonormal basis for the corresponding eigenspace (for instance, using Gram�Schmidt).

Advanced comment. A matrix such that ATA=AAT is called normal. For normal matrices, the (complex!)
eigenspaces are again orthogonal to each other. However, normal matrices which are not symmetric will always
have complex eigenvalues. (In that case, the orthogonal matrix P gets replaced with a unitary matrix, the complex
version of orthogonal matrices, and the PT becomes the conjugate transpose P�=P�T .)
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Example 86.

(a) Determine the eigenspaces of the symmetric matrix A=
�
1 3
3 1

�
.

(b) Diagonalize A as A=PDPT .

Solution.

(a) The characteristic polynomial is
�������� 1¡� 3

3 1¡�

��������=(�¡ 4)(�+2), and so A has eigenvalues 4;¡2.

The 4-eigenspace is null
��

¡3 3
3 ¡3

��
has basis

�
1
1

�
.

The ¡2-eigenspace is null
��

3 3
3 3

��
has basis

�
¡1
1

�
.

Important observation. The 4-eigenvector
�
1
1

�
and the ¡2-eigenvector

�
¡1
1

�
are orthogonal!

Review. The product of all eigenvalues ¡2 � 4=¡8 equals the determinant det(A)= 1¡ 9=¡8.

(b) Note that a usual diagonalization is of the form A=PDP¡1.
We need to choose P so that P¡1=PT , which means that P must be orthogonal (meaning orthonormal
columns). [Choosing such a P is only possible if the eigenspaces of A are orthogonal.]

Hence, we normalize the two eigenvectors to 1

2
p

�
1
1

�
and 1

2
p

�
¡1
1

�
.

With P =
1

2
p

�
1 ¡1
1 1

�
and D=

�
4 0
0 ¡2

�
, we then have A=PDPT .

Example 87. (again, simplified) Diagonalize the symmetric matrix A=
�
1 3
3 1

�
as A=PDPT .

Solution. See Example 86 for a solution that illustrates how to diagonalize any symmetric matrix. For a simplified
solution, note that we can see right away that

�
1
1

�
is a 4-eigenvector (since the row sums are equal!).

Because the eigenspaces are orthogonal (since A is symmetric!),
�
¡1
1

�
must also be an eigenvector.

Indeed,
�
1 3
3 1

��
¡1
1

�
=

�
2
¡2

�
shows that the corresponding eigenvalues is ¡2.

We normalize the two eigenvectors and use them as the columns of P , so that P = 1

2
p

�
1 ¡1
1 1

�
is an orthogonal

matrix (P¡1=PT ). With D=
�
4 0
0 ¡2

�
we then have A=PDPT .

Example 88. Let A be a symmetric 2 � 2 matrix with 7-eigenvector
�
2
5

�
and det(A) = ¡21.

Determine the second eigenvalue and a corresponding eigenvector.

Solution. A has ¡21
7
=¡3-eigenvector

�
¡5
2

�
.

Comment. Recall that, because A is symmetric, the eigenvector must be orthogonal to
�
2
5

�
.

[In general,
�
a
b

�
and

�
¡b
a

�
are orthogonal.]
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