
Sketch of Lecture 11 Fri, 2/3/2023

Review. The projection matrix for projecting onto col(A) is P =A(ATA)¡1AT .

Projecting onto 1-dimensional spaces

When we project onto a 1-dimensional space spanfwg, we usually just say that we are projecting
onto w.

The (orthogonal) projection of v onto w is
w �v
kwk2 w.

Why? Replace b with v and A with w in our general projection matrix formula to get w(wTw)¡1wTv, which
equals

w �v
kwk2 w (note that wTv=w �v and wTw= kwk2 are scalars).

Comment. If you have taken Calculus 3, you have seen that formula before. Most likely, you were deriving it
using angles at that time. Namely, the dot product has the following connection to angles:

v �w= kvk kwk cos� where � 2 [0; �] is the angle between v and w

Why? You can derive this by repeating what we did, right after Definition 29 to show that v andw are orthogonal
if and only if v �w=0. Just replace Pythagoras with the law of cosines (c2= a2+ b2¡ 2ab cos� holds in any
triangle!).
Two obvious cases. Observe that the cases �=0 and �= 90� are clearly true.

We will not discuss angles much further in this class. Just in case it is helpful, here is the typical
argument given in Calculus 3 to determine the projection projwv of v onto w:

From the sketch, we see that �error� = v¡projwv
and that this error is orthogonal to w.

Basic trigonometry tells us that the length of projwv
is kvk cos�. Hence:

projwv = kvk cos�
length

w
kwk

direction

=
kvk kwk cos�

kwk
w
kwk =

�
v �w
kwk2

�
w

v

w

θ

“error”

proj
w
v

Orthogonal bases

Review. Vectors v1; :::;vn are a basis for V .

() V = spanfv1; :::; vng and v1; :::;vn are linearly independent.

() Any vector w in V can be written as w= c1v1+ :::+ cnvn in a unique way.
The latter is the practical reason why we care so much about bases!
V could be some abstract vector space (of polynomials or Fourier series), meaning that vectors are abstract
objects and not just our usual column vectors. However, as soon as we pick a basis of V , then we can represent
every (abstract) vector w by the (usual) column vector (c1; c2; :::; cn)T .
This means all of our results can be used, too, when working with these abstract spaces!

Definition 59. A basis v1; :::; vn of a vector space V is an orthogonal basis if the vectors
are (pairwise) orthogonal. If, in addition, the basis vectors have length 1, then this is called an
orthonormal basis.
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Example 60. The standard basis

24 1
0
0

35;
24 0
1
0

35;
24 0
0
1

35 is an orthonormal basis for R3.

Example 61. Are the vectors

24 1
¡1
0

35;
24 1
1
0

35;
24 0
0
1

35 an orthogonal basis for R3? Is it orthonormal?

Solution.

24 1
¡1
0

35�
24 1
1
0

35=0,

24 1
¡1
0

35�
24 0
0
1

35=0,

24 1
1
0

35�
24 0
0
1

35=0.

So, this is an orthogonal basis.
On the other hand, the vectors do not all have length 1, so that this basis is not orthonormal.
Note. Orthogonal vectors are always linearly independent (see next class). Here, this certifies that the three
vectors are linearly independent (and hence a basis for R3).

Normalize the vectors to produce an orthonormal basis.
Solution.

24 1
¡1
0

35 has length

24 1
¡1
0

35�
24 1
¡1
0

35
s

= 2
p

=) normalized: 1

2
p

24 1
¡1
0

35
24 1
1
0

35 has length

24 1
1
0

35�
24 1
1
0

35
s

= 2
p

=) normalized: 1

2
p

24 1
1
0

35
24 0
0
1

35 has length

24 0
0
1

35�
24 0
0
1

35
s

=1 =) is already normalized:

24 0
0
1

35

The resulting orthonormal basis is 1

2
p

24 1
¡1
0

35; 1

2
p

24 1
1
0

35;
24 0
0
1

35.

Theorem 62. Suppose that v1; :::; vn are nonzero and pairwise orthogonal. Then v1; :::; vn are
linearly independent.
Proof. Suppose that c1v1+ :::+ cnvn=0. In order to show that v1; :::;vn are independent, we need to show
that c1= c2= :::= cn=0.
Take the dot product of v1 with both sides:

0 = v1 � (c1v1+ :::+ cnvn)

= c1v1 �v1+ c2v1 �v2+ :::+ cnv1 �vn
= c1v1 �v1= c1kv1k2

But kv1k=/ 0 and hence c1=0. Likewise, we find c2=0, :::, cn=0. Hence, the vectors are independent. �

Comment. Note that this result is intuitively obvious: if the vectors were linearly dependent, then one of
them could be written as a linear combination of the others. However, all these other vectors (and hence any
combination of them) are orthogonal to it.
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Orthogonal projections if we have an orthogonal basis

Lemma 63. (orthogonal projection if we have an orthogonal basis)
If v1; :::; vn are orthogonal, then the orthogonal projection of w onto spanfv1; :::;vng is

ŵ=
w �v1
v1 �v1

v1

proj of w
onto v1

+ :::+
w �vn
vn �vn

vn

proj of w
onto vn

:

Proof. It suffices to show that the error w¡ ŵ is orthogonal to each vi. Indeed:

(w¡ ŵ) �vi=
�
w¡ w �v1

v1 �v1
v1¡ :::¡

w �vn
vn �vn

vn

�
�vi=w �vi¡

w �vi
vi �vi

vi �vi=0:

Alternatively, can you deduce the formula (say, in the case of an orthonormal basis) from our earlier formula for
the projection matrix? �
Important consequence. If v1; :::;vn is an orthogonal basis of V , and w is in V , then

w= c1v1+ :::+ cnvn with cj=
w �vj
vj �vj

:

If the v1; :::;vn are a basis, but not orthogonal, then we have to solve a system of equations to find the ci. That
is a lot more work than simply computing a few dot products.

Note. In other words, w decomposes as the sum of its projections onto each basis vector.
Note. If v1; :::;vn are orthonormal, then the denominators are all 1.

Example 64. What is the projection of

24 3
7
4

35ontoW = spanfv1;v2g with v1=
24 1
¡1
0

35, v2=
24 1
1
0

35?
Comment. We know how to do this using least squares. (Do it for practice!)
However, realizing that v1 and v2 are orthogonal makes things easier.
[Actually, here, it is obvious what the projection is going to be if we realized that W is the x-y-plane.]

Solution. (using orthogonality) Because v1 and v2 are orthogonal, the projection is

24 3
7
4

35�
24 1
¡1
0

35
24 1
¡1
0

35�
24 1
¡1
0

35
24 1
¡1
0

35
projection onto v1

+

24 3
7
4

35�
24 1
1
0

35
24 1
1
0

35�
24 1
1
0

35
24 1
1
0

35
projection onto v2

=
¡4
2

24 1
¡1
0

35+ 10
2

24 1
1
0

35=
24 3
7
0

35:

Important note. Note that, at this point, we can easily extend

24 1
¡1
0

35;
24 1
1
0

35 to an orthogonal basis of R3:

That is because the error

24 3
7
4

35¡
24 3
7
0

35=
24 0
0
4

35 is orthogonal to both of the existing basis vectors.

Therefore

24 1
¡1
0

35;
24 1
1
0

35;
24 0
0
4

35 is an orthogonal basis of R3.

This observation underlies the Gram-Schmidt process, which we will discuss next class.
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Example 65. Express

24 3
7
4

35
x

in terms of the basis

24 1
¡1
0

35
v1

;

24 1
1
0

35
v2

;

24 0
0
1

35
v3

.

Solution. Because v1;v2;v3 is an orthogonal basis of R3, we get (much as in the previous example):
24 3
7
4

35 = c1

24 1
¡1
0

35+ c2

24 1
1
0

35+ c3

24 0
0
1

35

=

24 3
7
4

35�
24 1
¡1
0

35
24 1
¡1
0

35�
24 1
¡1
0

35

24 1
¡1
0

35
projection of x onto v1

+

24 3
7
4

35�
24 1
1
0

35
24 1
1
0

35�
24 1
1
0

35

24 1
1
0

35
projection of x onto v2

+

24 3
7
4

35�
24 0
0
1

35
24 0
0
1

35�
24 0
0
1

35

24 0
0
1

35
projection of x onto v3

=
¡4
2

24 1
¡1
0

35+ 10
2

24 1
1
0

35+ 4

1

24 0
0
1

35
Because we spelled out all the details this looks more involved than it is. We only computed 6 dot products!

Alternative. We could have solved

24 1 1 0
¡1 1 0
0 0 1

3524 c1
c2
c3

35=
24 3
7
4

35 to also find

24 c1
c2
c3

35=
24 ¡25

4

35.
The numbers are particularly easy here but in general, to find this solution, we have to go through the entire
process of Gaussian elimination. On the other hand, if we have an orthogonal basis, the former approach requires
less work, because it is just computing a few dot products.

Example 66. Express

24 3
7
4

35 in terms of the basis

24 1
1
0

35;
24 0
1
1

35;
24 1
0
1

35.
Solution. This is not an orthogonal basis, so we cannot proceed as in the previous example.

To write

24 3
7
4

35= c1

24 1
1
0

35+ c2

24 0
1
1

35+ c3

24 1
0
1

35, we need to solve

24 1 0 1
1 1 0
0 1 1

3524 c1
c2
c3

35=
24 3
7
4

35.
Solving that system (do it!), we find

24 c1
c2
c3

35=
24 3
4
0

35.
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