
Sketch of Lecture 28 Fri, 4/10/2020

Extra: More details on the spectral theorem

Let us add hv ;wi to our notations for the dot product: hv ;wi= vTw=v �w.

� In our story of orthogonality, the important player has been the dot product. However, one could argue
that the fundamental quantity is actually the norm:
hv;wi= 1

4
(kv+wk2−kv−wk2). See Example 22.

� Accepting the dot product as immensely important, we see that symmetric matrices (i.e. matrices A such
that A=AT) are of interest.
For any matrix A, hAv ;wi= hv; ATwi.
It follows that, a matrix A is symmetric if and only if hAv ;wi= hv ; Awi for all vectors v;w.

� Similarly, let Q be an orthogonal matrix (i.e. Q is a square matrix with QTQ= I).
Then, hQv ; Qwi= hv;wi.
In fact, a matrix A is orthogonal if and only if hAv; Awi= hv ;wi for all vectors v ;w.
Comment. We observed in Example 142 that orthogonal matrices Q correspond to rotations (detQ=1)
or reflections (detQ=−1) [or products thereof]. The equality hQv; Qwi= hv ;wi encodes the fact that
these types (and only these!) of geometric transformations preserve angles and lengths.

(Spectral theorem)
A n�n matrix A is symmetric if and only if it can be decomposed as A=PDPT , where

� D is a diagonal matrix, (n�n)

The diagonal entries �i are the eigenvalues of A.

� P is orthogonal. (n�n)

The columns of P are eigenvectors of A.

Note that, in particular, A is always diagonalizable, the eigenvalues (and hence, the eigenvectors) are all real,
and, most importantly, the eigenspaces of A are orthogonal.
The �only if� part says that, if A is symmetric, then we get a diagonalization A = PDPT . The �if� part says
that, if A=PDPT , then A is symmetric (which follows from AT =(PDPT)T =(PT)TDTPT =PDPT =A).

Let us prove the following important parts of the spectral theorem.

Theorem 149.

(a) If A is symmetric, then the eigenspaces of A are orthogonal.

(b) If A is real and symmetric, then the eigenvalues of A are real.

Proof.

(a) We need to show that, if v and w are eigenvectors of A with different eigenvalues, then hv;wi=0.
Suppose that Av=�v and Aw= �w with �=/ �.

Then, �hv;wi= h�v;wi= hAv ;wi= hv ; ATwi= hv ; Awi= hv; �wi= �hv;wi.
However, since �=/ �, �hv;wi= �hv;wi is only possible if hv;wi=0.

(b) Suppose � is a nonreal eigenvalue with nonzero eigenvector v. Then, v� is a ��-eigenvector and, since
�=/ ��, we have two eigenvectors with different eigenvalues. By the first part, these two eigenvectors must
be orthogonal in the sense that v�Tv = 0. But v�Tv = v�v = kvk2=/ 0. This shows that it is impossible
to have a nonzero eigenvector for a nonreal eigenvalue. �
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Let us highlight the following point we used in our proof:

Let A be a real matrix. If v is a �-eigenvector, then v� is a ��-eigenvector.

See, for instance, Example 83. This is just a consequence of the basic fact that we cannot algebraically distinguish
between +i and −i.

Singular value decomposition

(Singular value decomposition)
Every m�n matrix A can be decomposed as A=U�V T , where

� � is a (rectangular) diagonal matrix with nonnegative entries, (m�n)

The diagonal entries �i are called the singular values of A.

� U is orthogonal, (m�m)

� V is orthogonal. (n�n)

Comment. If A is symmetric, then the singular value decomposition is already provided by the spectral theorem
(the diagonalization of A). Moreover, in that case, V =U .
Important observations. If A=U�V T , then ATA= V �T�V T .

� Note that �T� is an n�n diagonal matrix. Its entries are �i
2 (the squares of the entries in �).

� ATA is a symmetric matrix! (Why?!) Hence, by the spectral theorem, we are able to find V and �T�.

In other words, V is obtained from the (orthonormally chosen) eigenvectors of ATA. Likewise, the entries of
�T� are the eigenvalues of ATA; their square roots are the entries of �, the singular values.
Finally, the equation AV =U� allows us to determine U . How?! (Hint: Avi=�iui)

This results in the following recipe to determine the SVD A=U�V T for any matrix A.
Find an orthonormal basis of eigenvectors vi of ATA. Let �i be the eigenvalue of vi.

� V is the matrix with columns vi.

� � is the diagonal matrix with entries �i= �i
p

.

� U is the matrix with columns ui=
1

�i
Avi. If needed, fill in additional columns to make U orthogonal.

Example 150. Determine the SVD of A=
�

2 2
−1 1

�
.

Solution. ATA=
�
5 3
3 5

�
has 8-eigenvector

�
1
1

�
and 2-eigenvector

�
−1
1

�
.

Since ATA=V �2V T (here, �T�=�2), we conclude that V =
1

2
p

�
1 −1
1 1

�
and �=

"
8

p

2
p

#
.

From Avi= �iui, we find u1=
1

�1
Av1=

1

8
p

�
2 2
−1 1

�
1

2
p

�
1
1

�
=

�
1
0

�
.

Likewise, u2=
1

�2
Av2=

1

2
p

�
2 2
−1 1

�
1

2
p

�
−1
1

�
=

�
0
1

�
. Hence, U =

�
1 0
0 1

�
. Check that, indeed, A=U�V T !

Comment. For applications, it is common to arrange the singular values in decreasing order like we did.

Comment. If we had chosen V =
1

2
p

�
−1 −1
−1 1

�
instead, then U =

�
−1 0
0 1

�
and �=

"
8

p

2
p

#
.

As with diagonalization, there are choices! (A lot fewer choices though.) This is another perfectly fine SVD. In
fact, it's what Sage computes below.
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Sage. Let's have Sage do the work for us. In Sage, the SVD is currently only implemented for
floating point numbers. (RDF is the real numbers as floating point numbers with double precision)

Sage] A = matrix(RDF, [[2,2],[-1,1]])

Sage] U,S,V = A.SVD()

Sage] U"
−1.0 1.11022302463� 10−16

8.64109131471� 10−17 1.0

#

Sage] S�
2.82842712475 0.0

0.0 1.41421356237

�
Sage] V�

−0.707106781187 −0.707106781187
−0.707106781187 0.707106781187

�
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Sketch of Lecture 29 Mon, 4/13/2020

Review. SVD

Example 151. Determine the SVD of A=
�
2 2
1 1

�
.

Comment. In contrast to our previous example, rank(A) = 1. It follows that ATA has eigenvalue 0, so that 0
is a singular value of A.

Solution. ATA=
�
5 5
5 5

�
has 10-eigenvector

�
1
1

�
and 0-eigenvector

�
−1
1

�
.

We conclude that V =
1

2
p

�
1 −1
1 1

�
and �=

"
10

p

0

#
.

u1=
1

�1
Av1=

1

10
p

�
2 2
1 1

�
1

2
p

�
1
1

�
=

1

20
p

�
4
2

�
=

1

5
p

�
2
1

�
We cannot obtain u2 in the same way because �2=0. Since for every vector u2, Av2= �2u2, we can choose
u2 as we wish, as long as the columns of U are orthonormal in the end.

u2=
1

5
p

�
−1
2

�
(but u2=

1

5
p

�
1
−2

�
works just as well)

Hence, U =
1

5
p

�
2 −1
1 2

�
.

In summary, A=U�V T with U =
1

5
p

�
2 −1
1 2

�
, �=

"
10

p

0

#
, V =

1

2
p

�
1 −1
1 1

�
.

Check. Do check that, indeed, A=U�V T .

Example 152. Determine the SVD of A=

24 1 −1
0 1
1 0

35.
Solution. ATA=

�
2 −1
−1 2

�
has 3-eigenvector

�
−1
1

�
and 1-eigenvector

�
1
1

�
.

Since ATA=V �T�V T , we conclude that V =
1

2
p

�
−1 1
1 1

�
and �=

2664 3
p

0
0 1
0 0

3775.
u1=

1

�1
Av1=

1

3
p

24 1 −1
0 1
1 0

35 1

2
p

�
−1
1

�
=

1

6
p

24 −21
−1

35
u2=

1

�2
Av2=

1

1

24 1 −1
0 1
1 0

35 1

2
p

�
1
1

�
=

1

2
p

24 0
1
1

35
u3 is chosen so that the matrix U is orthogonal. Hence, u3=

1

3
p

24 −1−1
1

35 (or u3=
1

3
p

24 1
1
−1

35).
Hence, U =

2664 −2/ 6
p

0 −1/ 3
p

1/ 6
p

1/ 2
p

−1/ 3
p

−1/ 6
p

1/ 2
p

1/ 3
p

3775.

In summary, A=U�V T with U =

2664 −2/ 6
p

0 −1/ 3
p

1/ 6
p

1/ 2
p

−1/ 3
p

−1/ 6
p

1/ 2
p

1/ 3
p

3775, �=
2664 3
p

0
0 1
0 0

3775, V =
1

2
p

�
−1 1
1 1

�
.

How did we find u3? We already have the vectors u1 and u2, and need a vector orthogonal to both.

That is, we need to find the vector spanning span

(24 −21
−1

35;
24 0
1
1

35
)?

= col

 24 −2 0
1 1
−1 1

35
!?

=null
��

−2 1 −1
0 1 1

��
.

[Without the intermediate steps, can you see why the null space consists of precisely the vectors orthogonal to
both u1 and u2?]
More generally, proceeding like this, we can always fill in �missing� vectors ui to obtain an orthonormal basis
u1;u2; :::;um that we can use as the columns of U .
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Sketch of Lecture 30 Wed, 4/15/2020

Example 153. Determine the SVD of A=
�
1 1
0 1

�
.

Solution. ATA=
�
1 1
1 2

�
has characteristic polynomial (1− �)(2−�)− 1=�2− 3�+1.

The eigenvalues of ATA are �1;2=
3� 5

p

2
.

3+ 5
p

2
-eigenvector

"
2

1+ 5
p

#
and 3− 5

p

2
-eigenvector

"
2

1− 5
p

#
.

It would be rather painful to continue with exact expressions, and that is not how applications typically proceed.
Numerically:

� 2.618-eigenvector
�
0.526
0.851

�
and 0.382-eigenvector

�
−0.851
0.526

�
. These eigenvectors are normalized, and it

is now actually immediately obvious that they are orthogonal. (Of course, they had to be!)

� Hence, �=
"

2.618
p

0.382
p

#
=

�
1.618

0.618

�
and V =

�
0.526 −0.851
0.851 0.526

�
.

[We chose
�
−0.851
0.526

�
instead of

�
0.851
−0.526

�
, so that, for the resulting V , detV =+1.]

� u1=
1

�1
Av1=

1

1.618

�
1 1
0 1

��
0.526
0.851

�
=

�
0.851
0.526

�
u2=

1

�2
Av1=

1

0.618

�
1 1
0 1

��
−0.851
0.526

�
=

�
−0.526
0.851

�
.

Hence, U =
�
0.851 −0.526
0.526 0.851

�
. (Again, notice the obvious orthogonality!)

Comment. The matrix A itself has eigenvalues 1; 1, but the 1-eigenspace is only 1-dimensional. We are missing
an eigenvector, which renders A not diagonalizable.

Comment. If we had continued symbolically, there is some magical simplifications like 3+ 5
p

2

r
=
1+ 5

p

2
going

on. By the way, this is the golden ratio!

Sage. In Sage, the SVD is currently only implemented for floating point numbers (RDF is the real numbers as
floating point numbers with double precision). Here's our computation:

Sage] A = matrix(RDF, [[1,1],[0,1]])

Sage] U,S,V = A.SVD()

Sage] U�
0.850650808352 −0.525731112119
0.525731112119 0.850650808352

�
Sage] S�

1.61803398875 0.0
0.0 0.61803398875

�
Sage] V�

0.525731112119 −0.850650808352
0.850650808352 0.525731112119

�
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Example 154. (continued) The matrices U and V are rotation matrices. By what angle?

Why rotations? Recall that orthogonal matrices have determinant +1 or −1.
Since detU =+1 and detV =+1, the orthogonal matrices U ; V are rotations.

Solution. Being rotation matrices, each of them equals
�
cos� −sin�
sin� cos�

�
for some angle �.

To find the angle �V for V , we compute arccos(0.526)=1.017. This means that �V =1.017 or �V =2�−1.017
(make a sketch of cos(�) if that's unclear!). Since sin(1.017)= 0.851 (whereas sin(2�− 1.017)=−0.851), we
conclude that V is a rotation by �V = 1.017= 58.3�. Keep that angle in mind for the next example!
Likewise, U is a rotation by �U= 0.554= 31.7�.

Comment. The two angles add up to 90�. That's a consequence of the (atypical) fact that the matrices U and
V have essentially the same entries.

Example 155. Explain the geometric meaning of the SVD in the previous example.

� The map x 7! Ax with A =
�
1 1
0 1

�
sends the (orthogonal) grid spanned by

�
1
0

�
and

�
0
1

�
to the

(nonorthogonal) grid spanned by A
�
1
0

�
=

�
1
0

�
and A

�
0
1

�
=

�
1
1

�
.

Make a sketch! The two grids are overlayed in the first plot on the next page.

� Likewise, for instance, (orthogonal) grid spanned by 1

2
p

�
1
1

�
and 1

2
p

�
−1
1

�
(this is the 45� degree rotated

version of the previous grid) is sent to the (again, nonorthogonal) grid spanned by 1

2
p

�
2
1

�
and 1

2
p

�
0
1

�
.

Make a sketch! The two grids are overlayed in the second plot on the next page.

� Can we find an orthogonal grid which is sent to another orthogonal grid by A?
Solution. Yes! The SVD A=U�V T is equivalent to AV =U�. That is, Avi=�iui.
In other words, the orthogonal grid spanned by v1;v2 is sent to the orthogonal grid spanned by �1u1;�2u2.
As we observed earlier, the grid spanned by v1;v2 is the 58.3� degree rotated version of the standard grid)
While the input grid consists of little squares, the output grid consists of rectangles with sides �1; �2.
Make a sketch! The two grids are overlayed in the third plot on the next page.

The following Sage code prepares the plots on the next page. Even if you have no coding background, can you
see, roughly, what is happening?

Sage] def grid_lines(v1, v2, n, args={}):
lines = Graphics()
for i in [-n..n]:

lines += line([i*v1-n*v2, i*v1+n*v2], color='red', **args)
lines += line([i*v2-n*v1, i*v2+n*v1], color='blue', **args)

return lines

Sage] def svd_rotate(angle):
A = matrix([[1,1],[0,1]])
t = angle*2*pi/360
R = matrix([[cos(t),-sin(t)],[sin(t),cos(t)]])
G1 = grid_lines(R*vector([1,0]), R*vector([0,1]), 2, {'linestyle':':'})
G2 = grid_lines(A*R*vector([1,0]), A*R*vector([0,1]), 2, {'linestyle':'--'})
B = polygon([(-5,-5), (-5,5), (5,5), (5,-5)], fill=False)
O = point((0,0), pointsize=30,color='black')
return B+O+G1+G2
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Grid spanned by
�
1
0

�
and

�
0
1

�
(dotted), and grid

spanned by
�
1
0

�
and

�
1
1

�
(dashed):

Sage] svd_rotate(angle = 0)

-4 -2 2 4

-4

-2

2

4

Grid spanned by 1

2
p

�
1
1

�
and 1

2
p

�
−1
1

�
(dotted), and

grid spanned by 1

2
p

�
2
1

�
and 1

2
p

�
0
1

�
(dashed):

Sage] svd_rotate(angle = 45)

-4 -2 2 4

-4

-2

2

4

Finally, here is the special situation (given by the SVD!) which shows an orthogonal grid (rotated
by 58.3� degree) that is sent to another orthogonal grid (rotated by 31.7� degree):

Sage] svd_rotate(angle = 58.3)

-4 -2 2 4

-4

-2

2

4

For more pictures and detailed comments see the beautiful article:

http://www.ams.org/samplings/feature-column/fcarc-svd
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Sketch of Lecture 31 Fri, 4/17/2020

Example 156. Show that the eigenvalues of ATA are all nonnegative.

Proof. Suppose that � is an eigenvalue of ATA. Then ATAv= �v (where v is a �-eigenvector).

It follows that vTATAv
=kAvk2>0

=�vTv= �kvk2. Finally, �kvk2> 0 implies that �> 0. �

The pseudoinverse of an m�n matrix A is the matrix A+ such that the system Ax= b has
�optimal� solution x=A+b.

Here, �optimal� means that x is the smallest least squares solution.
In particular:

� If Ax= b has a unique solution, then x=A+b is that solution.

� If Ax= b has many solutions, then x=A+b is the one of smallest norm (the �optimal� one; and there
is indeed only one such optimal solution).

� If Ax = b is inconsistent but has a unique least squares solution, then x = A+b is that least squares
solution.

� If Ax= b has many least squares solutions, then x=A+b is the one with smallest norm.

When there is a unique (least squares) solution, we know how to find the pseudoinverse:

� If A is invertible, then A+=A−1.

� If A has full column rank, then A+=(ATA)−1AT .
Recall. If Ax= b is inconsistent, a least squares solution can be determined by solving ATAx=ATb.
If A has full column rank (i.e. the columns of A are independent; in this context, the typical case), then
x=(ATA)−1ATb is the unique least squares solution to Ax= b.

Example 157.

(a) What is the pseudoinverse of �=

24 2 0
0 3
0 0

35?

(b) What is the pseudoinverse of �=
�
2 0 0
0 3 0

�
?

(c) What is the pseudoinverse of �=
�
2 0 0
0 0 0

�
?

(d) In each case, compute �+� and ��+.
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Solution.

(a) Recall that, if A has full column rank, then A+=(ATA)−1AT .

Here, �T�=
�
4 0
0 9

�
, so that �+=(�T�)−1�T =

�
1/4

1/9

��
2 0 0
0 3 0

�
=

�
1/2 0 0
0 1/3 0

�
.

Alternative. Let us think about the optimal solution to �x= b, that is,

24 2 0
0 3
0 0

35� x1
x2

�
=

24 b1
b2
b3

35.
The (unique) least squares solution is x=

�
b1/2
b2/3

�
. (Review if this is not obvious!)

Since
�
b1/2
b2/3

�
=

�
1/2 0 0
0 1/3 0

�
b, we conclude that �+=

�
1/2 0 0
0 1/3 0

�
.

(b) Let us think about the smallest norm (�optimal�) solution to �x= b, that is,
�
2 0 0
0 3 0

�24 x1
x2
x3

35=�
b1
b2

�
.

The general solution is x=

24 b1/2
b2/3
t

35, where t is a free parameter.

Clearly, the smallest norm solution is

24 b1/2
b2/3
0

35.
Since

24 b1/2
b2/3
0

35=
24 1/2 0

0 1/3
0 0

35b, we conclude that �+=
24 1/2 0

0 1/3
0 0

35.
(c) Now, �x= b, that is,

�
2 0 0
0 0 0

�24 x1
x2
x3

35=�
b1
b2

�
has no solution (unless b2=0).

We therefore need to think about least squares solutions.

The general least squares solution (why?!) is x=

24 b1/2
s
t

35, where s; t are free parameters.

Clearly, the smallest norm least squares solution is

24 b1/2
0
0

35.
Since

24 b1/2
0
0

35=
24 1/2 0

0 0
0 0

35b, we conclude that �+=
24 1/2 0

0 0
0 0

35.

(d) Firstly, �+�=
�
1/2 0 0
0 1/3 0

�24 2 0
0 3
0 0

35=�
1 0
0 1

�
and ��+=

24 2 0
0 3
0 0

35� 1/2 0 0
0 1/3 0

�
=

24 1 0 0
0 1 0
0 0 0

35.
Secondly, �+�=

24 1/2 0
0 1/3
0 0

35� 2 0 0
0 3 0

�
=

24 1 0 0
0 1 0
0 0 0

35 and ��+=
�
2 0 0
0 3 0

�24 1/2 0
0 1/3
0 0

35=�
1 0
0 1

�
.

[Note how the pseudoinverse tries to behave like the regular inverse. But since � has only 2 columns,
�+� and ��+ can have rank at most 2 (so cannot be the full 3� 3 identity).]

Thirdly, �+�=

24 1/2 0
0 0
0 0

35� 2 0 0
0 0 0

�
=

24 1 0 0
0 0 0
0 0 0

35 and ��+=
�
2 0 0
0 0 0

�24 1/2 0
0 0
0 0

35=�
1 0
0 0

�
.

[Here, � has rank 1, so that �+� and ��+ can have rank at most 1.]

In general. Proceeding, as in this example, we find that the pseudoinverse of any m� n diagonal matrix � is
the n�m (transposed dimensions!) diagonal matrix whose nonzero entries are the inverses of the entries of �.
Comment. Observe that, in all three cases, �++=�.

Comment. Note that
�
1 0
0 "

�+
=

"
1 0
0 "−1

#
for small " =/ 0, while

�
1 0
0 0

�+
=

�
1 0
0 0

�
. This shows that the

pseudoinverse is not a continuous operation.
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It turns out that the pseudoinverse A+ can be easily obtained from the SVD of A:

Theorem 158. The pseudoinverse of an m�n matrix A with SVD A=U�V T is

A+=V �+UT ;

where �+, the pseudoinverse of �, is the n�m diagonal matrix, whose nonzero entries are the
inverses of the entries of �.

Proof. The equation Ax= b is equivalent to U�V Tx= b and, thus, �V Tx=UTb.

Write y=V Tx and note that y and x have the same norm (why?!).
We already know that the equation �y=UTb has optimal solution y=�+UTb.

Since y and x have the same norm, it follows that x= Vy=V �+UTb is the optimal solution to Ax= b.
Hence, A+=V �+UT . �

Lemma 159. The pseudoinverse of A+ is A++=A.
Proof. Starting with the SVD A=U�V T , we have A+=V �+UT , which is the SVD of A+.
Therefore, A++=U�++V T . The claim thus follows from �++=�. �

Example 160. Determine the pseudoinverse of A=

24 1 −1
0 1
1 0

35 in two ways.

First, using the SVD and, second, using the fact that A has full column rank.
Solution. (SVD) We have computed the SVD of this matrix before.

Since A=U�V T with U =

2664 −2/ 6
p

0 −1/ 3
p

1/ 6
p

1/ 2
p

−1/ 3
p

−1/ 6
p

1/ 2
p

1/ 3
p

3775, �=
2664 3
p

0
0 1
0 0

3775, V =
1

2
p

�
−1 1
1 1

�
,

the pseudoinverse is A+=V �+UT where �+=
"
1/ 3
p

0 0
0 1 0

#
.

Multiplying these matrices, A+= 1

3

�
1 1 2
−1 2 1

�
.

Comment. For many applications, it may be neither necessary nor helpful to multiply V ;�+; UT .

Solution. (full column rank) Since A clearly has full column rank, we also have A+=(ATA)−1AT .

Indeed, A+=(ATA)−1AT =
�

2 −1
−1 2

�−1� 1 0 1
−1 1 0

�
=
1

3

�
2 1
1 2

��
1 0 1
−1 1 0

�
=
1

3

�
1 1 2
−1 2 1

�
.

Example 161. What is the pseudoinverse of A=
�
2 2
1 1

�
?

Solution. Recall (or compute) that A=U�V T with U =
1

5
p

�
2 −1
1 2

�
, �=

"
10

p

0

#
, V =

1

2
p

�
1 −1
1 1

�
.

Hence, A+=V �+UT where �+=
"
1/ 10
p

0
0 0

#
.

Multiplying these matrices (which may not be necessary or helpful for applications), A+= 1

10

�
2 1
2 1

�
.

Note. Since A does not have full column rank, A+=(ATA)−1AT cannot be used. That's because ATA is not
invertible.

Comment. Here, A+A=v1v1T =
1

2

�
1 1
1 1

�
and AA+=u1u1

T =
1

5

�
4 2
2 1

�
are not visually like the identity. How-

ever, note that these are the (orthogonal) projections onto v1 and u1 respectively (in particular, the eigenvalues
are 1; 0).
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Sketch of Lecture 32 Mon, 4/20/2020

Review.

� If the m�n matrix A has SVD A=U�V T , then its pseudoinverse is A+=V �+UT .
Here, �+, the pseudoinverse of �, is the n�m diagonal matrix, whose nonzero entries are the inverses
of the entries of �.

� The system Ax= b has �optimal� solution x=A+b.

Here, �optimal� means that x is the smallest least squares solution.

Example 162.

(a) Find the pseudoinverse of A= [ 1 2 3 ].

(b) Find the smallest solution to x1+2x2+3x3=6.

As before, smallest solutions means the solution x such that kxk is as small as possible. One obvious
solution is [ 1; 1; 1 ]T , but is it the smallest?

Solution.

(a) ATA=

24 1
2
3

35[ 1 2 3 ]=

24 1 2 3
2 4 6
3 6 9

35 has 14-eigenvector
24 1
2
3

35 and 0-eigenvectors

24 −21
0

35;
24 −30

1

35.
u1=

1

�1
Av1=

1

14
p [ 1 2 3 ]

1

14
p

24 1
2
3

35=1

Hence, A=U�V T with U = [ 1 ], �=
�

14
p

0 0
�
, V =

2664 1/ 14
p

� �
2/ 14
p

� �
3/ 14
p

� �

3775.

A+=V �+UT =

2664 1/ 14
p

� �
2/ 14
p

� �
3/ 14
p

� �

3775
2664 1/ 14

p

0
0

3775[ 1 ] = 1

14

24 1
2
3

35
Comment. No surprise on U . The only options for U are U = [ 1 ] and U = [ −1 ].
Comment. Realizing what we did here allows us to write down A+ immediately for all 1 � n matrices
A. See Example 163.
Homework. Complete the SVD of A. That is, find an option for the two missing columns of V , so that
V is an orthogonal matrix. In other words, find an orthonormal basis for the 0-eigenspace.

(b) We are solving Ax= [ 6 ] with A= [ 1 2 3 ] as in the previous example.

We conclude that the smallest solution is x=A+[ 6 ] =
3
7

24 1
2
3

35.
Compare.











37
24 1
2
3

35










= 3

7
14

p
� 1.604 is indeed smaller than, say,












24 1
1
1

35










= 3

p
� 1.732.

Geometric picture. The equation x1+2x2+3x3=6 describes a plane (not through the origin), and we
are asking for the point on that plane which is closest to the origin. That's a typical question in Calculus
III. Note that [ 1 2 3 ]T is the normal vector of the plane. Explain why the answer had to be a multiple
of that normal vector!

Example 163. More generally, find the pseudoinverse of A= [ a1 a2 a3 ].

Solution. As in the previous example, we see that the answer will be A+= a

kak2 with a=

24 a1
a2
a3

35.
Comment. Likewise for A= [ a1 a2 ::: an ].
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Example 164. How is the rank of A reflected in its singular value decomposition A=U�V T?

Solution. The rank of A is equal to the number of nonzero singular values.

Theorem 165. (matrix approximation lemma) Suppose A is a m�n matrix, and we want
to approximate A using a matrix B of rank s (smaller than the rank of A).

Let A=U�V T be the SVD of A (with singular values in decreasing order).

Then, the best such approximation is B=Us�sVs
T , where �s is the s� s diagonal matrix with

entries �1; �2; :::; �s and Us; Vs are obtained from U ; V by only taking the first s columns.

Comment. Note that, by choosing s small compared to r, we can store an approximation of A using much less
data. This approximation will be good if the omitted singular values �s+1; �s+2; :::; �r are all �small�.

Comment. Equivalently, B=U�sV
T , where �s is now obtained from � by setting all but the largest s singular

values to 0. In other words, �s has the values �1; �2; :::; �s on its diagonal, followed by zeros.
In other words. Here is another common way to say the same thing:

� Observe that A=U�V T is equivalent to A=
X
i=1

r

�iuivi
T .

� Each matrix uivi
T has rank 1.

� The best rank s approximation to A is B=
X
i=1

s

�iuivi
T .

Advanced comment. Here, �best� approximation is measured using the Frobenius norm of a matrix A (which
is the same as the norm of a vector with all the entries of A).

Example 166. Determine the best rank 1 approximation of A=
�
1 1 1
1 0 −1

�
.

Solution. We determine (do it!) that A has the SVD

A=

�
1 0
0 −1

�"
3

p
0 0

0 2
p

0

#2664 1/ 3
p

−1/ 2
p

1/ 6
p

1/ 3
p

0 −2/ 6
p

1/ 3
p

1/ 2
p

1/ 6
p

3775
T

=

�
1 1 1
1 0 −1

�
.

Hence, the best rank 1 approximation of A is (that is, we keep 1 singular value only) is�
1
0

��
3

p �2664 1/ 3
p

1/ 3
p

1/ 3
p

3775
T

=

�
1 1 1
0 0 0

�
.

Comment. Equivalently,
�
1 0
0 −1

�"
3

p
0 0

0 0 0

#2664 1/ 3
p

−1/ 2
p

1/ 6
p

1/ 3
p

0 −2/ 6
p

1/ 3
p

1/ 2
p

1/ 6
p

3775
T

=
�
1 1 1
0 0 0

�
.

Example 167. Determine the best rank 1 approximation of A=

24 1 −1
0 1
1 0

35.
Solution. Recall that A=U�V T with U =

2664 −2/ 6
p

0 −1/ 3
p

1/ 6
p

1/ 2
p

−1/ 3
p

−1/ 6
p

1/ 2
p

1/ 3
p

3775, �=
2664 3
p

0
0 1
0 0

3775, V =
1

2
p

�
−1 1
1 1

�
.

Hence, the best rank 1 approximation of A is 1

6
p

24 −21
−1

35� 3
p � 1

2
p

�
−1
1

�T
=
1

2

24 2 −2
−1 1
1 −1

35.
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Example 168. (image compression) Let us load a 341x512 grayscale photo and store it as a
matrix A. Each entry of the matrix is a value between 0 (black) and 1 (white).

The beautiful picture is taken from: http://www.southalabama.edu/departments/publicrelations/brand/photography.html

[The same approach works with color pictures. These are often represented by three matrices: one for the red
component of the pixel, one for the green and for the blue component (RGB color scheme).]

Sage] import pylab

Sage] A = matrix(pylab.imread('/home/armin/photo.png'))

Sage] A.dimensions()

(341; 512)

Sage] A[0,0]

0.137254908681

Sage] matrix_plot(A, cmap='gray')

0 100 200 300 400 500

0

50

100

150

200

250

300

Next, we compute the SVD of A. Despite the size of A that takes the computer only a fraction of a second:

Sage] U,S,V = A.SVD()

Sage] S.diagonal()[:6]

[238.443435709;79.4429775448; 35.4540786319; 20.5662302846; 20.0697710337; 13.3421216529]

Sage] list_plot(S.diagonal(), scale='semilogy')

0 50 100 150 200 250 300

10-1

100

101

102
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As we can see, the magnitude of the singular values drops off quickly. We get a good approximation to A (our
original photo) by computing a best rank s approximation to A by computing Us�sVs where �s is the s � s
diagonal matrix with entries �1; �2; :::; �s and Us; Vs are obtained from the corresponding matrices in the SVD
A=U�V T by only taking the first s columns.

Sage] def A_approx(s):
U0 = U.matrix_from_columns([0..s-1])
S0 = diagonal_matrix(S.diagonal()[:s])
V0 = V.matrix_from_columns([0..s-1])
return U0*S0*V0.transpose()

Taking only 100 of the 341 singular values, we get an approximation, which is almost as good as the original:

Sage] matrix_plot(A_approx(100), cmap='gray')
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But notice the development of artifacts. Taking only 20 of the 341 singular values, a lot is lost:

Sage] matrix_plot(A_approx(20), cmap='gray')

0 100 200 300 400 500

0

50

100

150

200

250

300

Comment. Image compression is just one (nice visual) example of the power of SVD. A variation of this approach
can, for instance, also be used for image denoising. Much more generally, the SVD is able to extract the most
important features of any sort of data!
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Sketch of Lecture 33 Wed, 4/22/2020

Review. matrix approximation and compression

Function spaces

Recall the following:

� We call objects vectors if they can be added and scaled (subject to the usual laws).

� A set of vectors is a vector space if it is closed under addition and scaling.

In other words, vector spaces are spans.

We will now discuss spaces of vectors, where the vectors are functions.

Why? Just one example why it is super useful to apply our linear algebra machinery to functions: we discussed
the distance between vectors and how to find vectors closest to interesting subspaces (i.e. orthogonal projections).
These notions are important for functions, too. For instance, given a (complicated) function, we want to find
the closest function in a subspace of (simple) functions. In other words, we want to approximate functions using
other (typically, simpler) functions.
Comment. Functions f(x) and g(x) can also be multiplied. This is an extra structure (it makes appropriate
sets of functions an algebra, which is something more special than a vector space), which we ignore during our
discussion of vector spaces.

An inner product on function spaces

On the space of, say, (piecewise) continuous functions f : [a; b]!R, it is natural to consider
the dot product

hf ; gi=
Z
a

b

f(t)g(t)dt:

Why? A (sensible) dot product provides a (sensible) notion of distance between functions. The dot product
above is the continuous analog of the usual dot product hx; yi=

P
t=1
n xtyt for vectors in Rn. Do you see it?!

As a consequence, once we have the dot product, we can orthogonally project functions onto spaces of simple
functions. In other words, we can compute best approximations of functions by simple functions (for instance,
best quadratic approximations).
Why continuous? We need that any product f(x)g(x) is integrable. That means we cannot work with all
functions. Continuity is certainly sufficient. In fact, the right condition is that f(x)2 should be integrable on
[a; b] (i.e. f(x) is square-integrable). Such a function is said to be in L2[a; b].

Example 169. What is the orthogonal projection of f : [a; b]! R onto the space of constant
functions (that is, spanf1g)?
Solution. The orthogonal projection of f : [a; b]!R onto spanf1g is

hf ; 1i
h1; 1i 1=

R
a
b
f(t)1dtR
a
b12dt

=
1

b− a

Z
a

b

f(t)dt:

This is the average of f(x) on [a; b].
Comment. Makes perfect sense, doesn't it? Intuitively, the best approximation of a function by a constant
should indeed be the one where the constant is the average.
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Example 170. Find the best approximation of f(x)= x
p

on the interval [0; 1] using a function
of the form y= ax.

Solution. The orthogonal projection of f : [0;1]!R onto spanfxg
is

hf ; xi
hx; xix=

R
0

1
f(t)tdtR
0
1t2dt

x=3x

Z
0

1

tf(t)dt:

In our case, the best approximation is

3x

Z
0

1

t t
p
dt=3x

Z
0

1

t3/2dt=3x

�
1
5/2

t5/2
�
0

1

=
6
5
x: 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1.2
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Sketch of Lecture 34 Fri, 4/24/2020

Example 171. Find the best approximation of f(x)= x
p

on the interval [0; 1] using a function
of the form y= a+ bx.
Important observation. The orthogonal projection of f : [0;1]!R onto spanf1; xg is not simply the projection
onto 1 plus the projection onto x. That's because 1 and x are not orthogonal:

h1; xi=
Z
0

1

tdt=
1
2
=/ 0:

Solution. To find an orthogonal basis for spanf1; xg, following Gram�Schmidt, we compute

x−
�
projection of
x onto 1

�
=x− hx; 1ih1; 1i1=x− 1

2
:

Hence, 1; x− 1

2
is an orthogonal basis for spanf1; xg.

The orthogonal projection of x
p

on [0; 1] onto spanf1; xg= span
n
1; x− 1

2

o
therefore is

h x
p

; 1i
h1; 1i 1+

D
x

p
; x− 1

2

E
D
x− 1

2
; x− 1

2

E�x− 1
2

�
=

R
0
1

t
p
dtR

0
11dt

+

R
0
1

t
p �

t− 1

2

�
dtR

0
1
�
t− 1

2

�
2
dt

�
x− 1

2

�
:

We compute the three new integrals:Z
0

1

t
p
dt =

�
2
3
t3/2

�
0

1

=
2
3Z

0

1

t
p
�
t− 1

2

�
dt =

Z
0

1
�
t3/2− 1

2
t1/2

�
dt=

�
2
5
t5/2− 1

3
t3/2

�
0

1

=
2
5
− 1
3
=

1
15Z

0

1
�
t− 1

2

�
2

dt =

Z
0

1
�
t2− t+ 1

4

�
dt=

�
1
3
t3− 1

2
t2+

1
4
t

�
0

1

=
1
3
− 1
2
+
1
4
=

1
12

Using these values, the best approximation is

R
0
1

t
p
dtR

0
11dt

+

R
0
1

t
p �

t− 1

2

�
dtR

0
1
�
t− 1

2

�
2
dt

�
x− 1

2

�
=

2
3
+
12
15

�
x− 1

2

�
=
4
5
x+

4
15

The plot below confirms how good this linear approximation is (compare with the previous example):
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Sketch of Lecture 35 Mon, 4/27/2020

Example 172. Give a basis for the space of all polynomials.

Solution. 1; x; x2; x3; :::
Indeed, every polynomial p(x) = a0+ a1x+ a2x

2+ :::+ anx
n can be written uniquely as a sum of these basis

elements. (�can be� = span; �uniquely� = independent)
Comment. The dimension is 1. But we can make a list of basis elements, which is the �smallest kind of 1�
and is referred to as countably infinite. For the space of all functions, no such list can be made.
Just for fun. Let us indicate this difference in infiniteness in a slightly simpler situation: first, the natural numbers
0; 1; 2; 3::: are infinite but they are countable, because we can make a (infinite but complete) list starting with
a first, then a second element and so on (hence, the name �countable�). On the other hand, consider the real
numbers between 0 and 1. Clearly, there is infinitely many such numbers. The somewhat shocking fact (first
realized by Georg Cantor in 1874) is that every attempt of making a complete list of these numbers must fail
because every list will inevitably miss some numbers. Here's a brief indication of how the famous diagonal
argument goes: suppose you can make a list, say:

#1 0.111111:::
#2 0.123456:::
#3 0.750000:::
���

Now, we are going to construct a new number x=0:x1x2x3::: with decimal digits xi in such a way that the digit xi
differs (by more than 1) from the ith digit of number#i on our list. For instance, 0.352::: in our case (for instance,
x3=2 differs from 0, the 3rd digit of sequence #3). By construction, the number x is missing from the list.
Comment on fun. The statement �some infinities are bigger than others� nicely captures our observation. It
appears in the book The Fault in Our Stars by John Green, where it is said by a cranky old author who attributes
it to Cantor. Hazel, the main character, later reflects on that statement and compares [0; 1] to [0; 2]. Can you
explain why that is actually not what Cantor meant:::?

Orthogonal polynomials

Let us think about the space of all polynomials (with real coefficients). On that space, we consider
the dot product

hp1; p2i=
Z
−1

1

p1(t)p2(t)dt: (1)

Comment. That dot product is useful if we are thinking about the polynomials as functions on [−1; 1] only.
You can, of course, consider any other interval and you will obtain a shifted version of what we get here.

Example 173. Are 1; x; x2; ::: orthogonal (with respect to the inner product (1))?

Solution. Since hxr; xsi=
Z
−1

1

trtsdt=

Z
−1

1

tr+sdt, we find that hxr; xsi=

8<: 2

r+ s+1
; if r+ s is even,

0; otherwise:

Hence, if r+ s is odd, then the monomials xr and xs are orthogonal. On the other hand, if r+ s is even, then
xr and xs are not orthogonal.

Armin Straub
straub@southalabama.edu

82



Example 174. Use Gram-Schmidt to produce an orthogonal basis p0; p1; p2; ::: for the space of
polynomials with the dot product (1). Compute p0; p1; p2; p3; p4.

Instead of normalizing these polynomials, standardize them so that pn(1)= 1.

Solution. We construct an orthogonal basis p0; p1; p2; ::: from 1; x; x2; ::: as follows:

� Starting with 1, we find p0(x)= 1.

For future reference, let us note that kp0k2=
Z
−1

1

1dx=2.

� Starting with x, Gram�Schmidt produces x−
�
projection of
x onto p0

�
=x− hx; p0i

hp0; p0i
p0=x−

Z
−1

1

tdt=x.

Again, that's already standardized, so that p1(x)=x.
Comment. The previous problem already told us that x is orthogonal to 1.

For future reference, let us note that kp1k2=
Z
−1

1

t2dt=
2
3
.

� Starting with x, Gram�Schmidt produces x2−
�

projection of x2
onto spanfp0; p1g

�
= x2− hx

2; p0i
hp0; p0i

p0−
hx2; p1i
hp1; p1i

p1

=x2− 1
2

Z
−1

1

t2dt− x
2/3

Z
−1

1

t3dt=x2− 1
3
.

Hence, standardizing, p2(x)=
1

2
(3x2− 1).

Comment. The previous problem told us that x2 is orthogonal to x (but not to 1).

� Continuing, we find p3(x)=
1

2
(5x3− 3x) and p4(x)= 1

8
(35x4− 30x2+3).

Comment. These famous polynomials are known as the Legendre polynomials. The Legendre polynomial pn
is an even function if n is even, and an odd function if n is odd (can you explain why?!).

An explicit formula is pn(x)= 2−n
P

k=0
n �

n
k

�2
(x+1)k(x− 1)n−k.

For instance, p2(x)=
1

4
((x− 1)2+22(x− 1)(x+1)+ (x+1)2) =

1

2
(3x2− 1).

https://en.wikipedia.org/wiki/Legendre_polynomials

Comment. Legendre polynomials are an example of orthogonal polynomials. Each choice of dot product gives
rise to a family of such orthogonal polynomials.
https://en.wikipedia.org/wiki/Orthogonal_polynomials

Comment. It is also particularly natural to consider the dot product (1), where the integral is from 0 to 1. In
that case, we obtain what's known as the shifted Legendre polynomials p~n(x)= pn(2x− 1).

Comment on other norms. Our choice of inner product

hf ; gi=
Z
a

b

f(t)g(t)dt

for (square-integrable) functions on [a; b] gives rise to the norm kf k=
(R
a
b
f(t)2dt

�1/2. This is known as the
L2-norm (and often written as kf k2).
It is the continuous analog of the usual Euclidean norm kvk=(v1

2+ v2
2+ :::)1/2 (known as `2-norm).

There do exist other norms to measure the magnitude of vectors, such as the `1-norm kvk1= jv1j+ jv2j+ :::
or, more generally, for p> 1, the `p-norms kvkp=(jv1jp+ jv2jp+ :::)1/p.

Likewise, for functions, we have the Lp-norms kf kp=
(R
a
b
f(t)pdt

�1/p.
Only in the case p = 2 do these norms come from an inner product. That's a mathematical (as opposed to
geometric) reason why we especially care about that case.
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Sketch of Lecture 36 Wed, 4/29/2020

Linear transformations

Throughout, V and W are vector spaces.

Just like we went from column vectors to abstract vectors (such as polynomials), the concept of a matrix leads
to abstract linear transformations.
In the other direction, picking a basis, abstract vectors can be represented as column vectors (see Lecture 35).
Correspondingly, linear transformations can then be represented as matrices.

Definition 175. A map T :V !W is a linear transformation if

T (cx+ dy)= cT (x)+ dT (y) for all x; y in V and all c; d in R.

In other words, a linear transformation respects addition and scaling:

� T (x+ y)=T (x) +T (y)

� T (cx)= cT (x)

It necessarily sends the zero vector in V to the zero vector in W :
� T (0)=0 [because T (0)= T (0 �0) = 0 �T (0)=0]

Comment. Linear transformations are special functions and, hence, can be composed. For instance, if T :V !W
and S:U!V are linear transformations, then T �S is a linear transformation U!W (sending x to T (S(x))).
If S; T are represented by matrices A; B, then T � S is represented by the matrix BA. In other words, matrix
multiplication arises as the composition of (linear) functions.

Example 176. The derivative you know from Calculus I is linear.

Indeed, the map D:

8<: space of all
differentiable
functions

9=;!
�
space of all
functions

�
defined by f(x) 7! f 0(x) is a linear transformation:

� D(f(x)+ g(x))||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
(f(x)+g(x))0

=D(f(x))|||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
f 0(x)

+D(g(x))||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
g 0(x)

� D(cf(x))||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
(cf(x))0

= cD(f(x))||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
cf 0(x)

These are among the first properties you learned about the derivative.

Similarly, the integral you love from Calculus II is linear:Z
a

b

(f(x)+ g(x))dx=

Z
a

b

f(x)dx+

Z
a

b

g(x)dx;

Z
a

b

cf(x)dx= c

Z
a

b

f(x)dx

In this form, we are looking at a map T :

8<:space of allcontinuous
functions

9=;!R defined by T (f(x))=
Z
a

b

f(x)dx.

Example 177. Consider the space V of all polynomials p(x) of degree 3 or less. The map D:
V ! V given by p(x) 7! p0(x) is a linear. Write down the matrix M for this linear map with
respect to the basis 1; x; x2; x3.
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Solution. M =

266664
0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

377775
For instance, the 3rd column says that x2 (the 3rd basis element) gets sent to 0 � 1+2 �x+0 �x2+0 �x3=2x.

Example 178. Consider the map

D:

�
space of poly's
of degree 63

�
!

�
space of poly's
of degree 62

�
; p(x) 7! p0(x):

Write down the matrix M for this linear map with respect to the bases 1; x; x2; x3 and 1; x; x2.

Solution. M =

24 0 1 0 0
0 0 2 0
0 0 0 3

35
For instance, the 3rd column says that x2 (the 3rd basis element) gets sent to 0 � 1+2 � x+0 � x2=2x.

Example 179. What is the pseudo-inverse of the matrix M from the previous example. Interpret
your finding.

Solution. (final answer only) The pseudo-inverse of

24 0 1 0 0
0 0 2 0
0 0 0 3

35 is

266664
0 0 0
1 0 0
0 1/2 0
0 0 1/3

377775.
The corresponding linear map sends 1 to x, x to 1

2
x2 and x2 to 1

3
x3. That is, the pseudo-inverse computes the

antiderivative of each monomial.
Comment. This is not surprising, since we are familiar from Calculus with the concepts of derivatives and
antiderivatives (or integrals), and that these are �pseudo� inverse to each other.

Comment. Similarly, the pseudo-inverse of

266664
0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

377775 is

266664
0 0 0 0
1 0 0 0
0 1/2 0 0
0 0 1/3 0

377775.
Now, the corresponding linear map sends 1 to x, x to 1

2
x2, x2 to 1

3
x3, and x3 to 0. That is, the pseudo-inverse

computes the antiderivative of each monomial, with the exception of x3 which gets send to 0 (its antiderivative
does not live in the space of polynomials of degree 3).

Example 180. (The April Fools' Day �proof� that �=4, cont'd)
In that �proof�, we are constructing curves cn with the property that cn!c where c is the circle. This convergence
can be understood, for instance, in the same sense kcn−ck!0 with the norm introduced as we did for functions.
Since cn! c we then wanted to conclude that perimeter(cn)!perimeter(c), leading to 4!�.
However, in order to conclude from xn! x that f(xn)! f(x) we need that f is continuous (at x)!!
The �function� perimeter, however, is not continuous. In words, this means that (as we see in this example)
curves can be arbitrarily close, yet have very different arc length.
We can dig a little deeper: as you learned in Calculus II, the arc length of a function y= f(x) for x2 [a; b] isZ

a

b

(dx)2+(dy)2
q

=

Z
a

b

1+ f 0(x)2
q

dx:

Observe that this involves f 0. Try to see why the operator D that sends f to f 0 is not continuous with respect
to the distance induced by the norm

kf k=
�Z

a

b

f(x)2dx

�
1/2

:

In words, two functions f and g can be arbitrarily close, yet have very different derivatives f 0 and g 0.
That's a huge issue in functional analysis, which is the generalization of linear algebra to infinite dimensional
spaces (like the space of all differentiable functions). The linear operators (�matrices�) on these spaces frequently
fail to be continuous.
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Fourier series

A Fourier series for a function f(x) is a series of the form

f(x)= a0+ a1cos(x)+ b1sin(x)+ a2cos(2x)+ b2sin(2x)+ ���

You may have seen Fourier series in other classes before. Our goal here is to tie them in with what
we have learned about orthogonality.

In these other classes, you would have seen formulas for the coefficients ak and bk. We will see where those
come from.
Observe that the right-hand side combination of cosines and sines is 2�-periodic.

Let us consider (nice) functions on [0; 2�].

Or, equivalently, functions that are 2�-periodic.

We know that a natural inner product for that space of functions is

hf ; gi=
Z
0

2�

f(t)g(t)dt:

Example 181. Show that cos(x) and sin(x) are orthogonal (in that sense).

Solution. hcos(x); sin(x)i=
Z
0

2�

cos(t)sin(t)dt=
�
1
2
(sin(t))2

�
0

2�

=0

In fact:

All the functions 1; cos(x); sin(x); cos(2x); sin(2x); ::: are orthogonal to each other!

Moreover, they form a basis in the sense that every other (nice) function can be written as a (infinite) linear
combination of these basis functions.

Example 182. What is the norm of cos(x)?

Solution. hcos(x); cos(x)i=
Z
0

2�

cos(t)cos(t)dt=�

Why? There's many ways to evaluate this integral. For instance:

� integration by parts

� using a trig identity

� here's a simple way:

�
R
0
2�cos2(t)dt=

R
0
2�sin2(t)dt (cos and sin are just a shift apart)

� cos2(t)+ sin2(t)= 1

� So:
R
0
2�cos2(t)dt= 1

2

R
0
2�
1dx=�

Hence, cos(x) is not normalized. It has norm kcos(x)k= �
p

.

Similarly. The same calculation shows that cos(kx) and sin(kx) have norm �
p

as well.
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Example 183. How do we find, say, b2?

Solution. Since the functions 1; cos(x); sin(x); cos(2x); sin(2x); :::, the term b2sin(2x) is the orthogonal
projection of f(x) onto sin(2x).

In particular, b2=
hf(x); sin(2x)i
hsin(2x); sin(2x)i =

1
�

Z
0

2�

f(t)sin(2t)dx.

In conclusion:

A (nice) f(x) on [0; 2�] has the Fourier series

f(x)= a0+ a1cos(x)+ b1sin(x)+ a2cos(2x)+ b2sin(2x) + ���

where

ak=
hf(x); cos(kx)i
hcos(kx); cos(kx)i =

1
�

Z
0

2�

f(t)cos(kt)dt;

bk=
hf(x); sin(kx)i
hsin(kx); sin(kx)i =

1
�

Z
0

2�

f(t)sin(kt)dt;

a0=
hf(x); 1i
h1; 1i =

1
2�

Z
0

2�

f(t)dt:
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