
Sketch of Lecture 35 Mon, 4/27/2020

Example 172. Give a basis for the space of all polynomials.

Solution. 1; x; x2; x3; :::
Indeed, every polynomial p(x) = a0+ a1x+ a2x

2+ :::+ anx
n can be written uniquely as a sum of these basis

elements. (�can be� = span; �uniquely� = independent)
Comment. The dimension is 1. But we can make a list of basis elements, which is the �smallest kind of 1�
and is referred to as countably infinite. For the space of all functions, no such list can be made.
Just for fun. Let us indicate this difference in infiniteness in a slightly simpler situation: first, the natural numbers
0; 1; 2; 3::: are infinite but they are countable, because we can make a (infinite but complete) list starting with
a first, then a second element and so on (hence, the name �countable�). On the other hand, consider the real
numbers between 0 and 1. Clearly, there is infinitely many such numbers. The somewhat shocking fact (first
realized by Georg Cantor in 1874) is that every attempt of making a complete list of these numbers must fail
because every list will inevitably miss some numbers. Here's a brief indication of how the famous diagonal
argument goes: suppose you can make a list, say:

#1 0.111111:::
#2 0.123456:::
#3 0.750000:::
���

Now, we are going to construct a new number x=0:x1x2x3::: with decimal digits xi in such a way that the digit xi
differs (by more than 1) from the ith digit of number#i on our list. For instance, 0.352::: in our case (for instance,
x3=2 differs from 0, the 3rd digit of sequence #3). By construction, the number x is missing from the list.
Comment on fun. The statement �some infinities are bigger than others� nicely captures our observation. It
appears in the book The Fault in Our Stars by John Green, where it is said by a cranky old author who attributes
it to Cantor. Hazel, the main character, later reflects on that statement and compares [0; 1] to [0; 2]. Can you
explain why that is actually not what Cantor meant:::?

Orthogonal polynomials

Let us think about the space of all polynomials (with real coefficients). On that space, we consider
the dot product

hp1; p2i=
Z
−1

1

p1(t)p2(t)dt: (1)

Comment. That dot product is useful if we are thinking about the polynomials as functions on [−1; 1] only.
You can, of course, consider any other interval and you will obtain a shifted version of what we get here.

Example 173. Are 1; x; x2; ::: orthogonal (with respect to the inner product (1))?

Solution. Since hxr; xsi=
Z
−1

1

trtsdt=

Z
−1

1

tr+sdt, we find that hxr; xsi=

8<: 2

r+ s+1
; if r+ s is even,

0; otherwise:

Hence, if r+ s is odd, then the monomials xr and xs are orthogonal. On the other hand, if r+ s is even, then
xr and xs are not orthogonal.
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Example 174. Use Gram-Schmidt to produce an orthogonal basis p0; p1; p2; ::: for the space of
polynomials with the dot product (1). Compute p0; p1; p2; p3; p4.

Instead of normalizing these polynomials, standardize them so that pn(1)= 1.

Solution. We construct an orthogonal basis p0; p1; p2; ::: from 1; x; x2; ::: as follows:

� Starting with 1, we find p0(x)= 1.

For future reference, let us note that kp0k2=
Z
−1

1

1dx=2.

� Starting with x, Gram�Schmidt produces x−
�
projection of
x onto p0

�
=x− hx; p0i

hp0; p0i
p0=x−

Z
−1

1

tdt=x.

Again, that's already standardized, so that p1(x)=x.
Comment. The previous problem already told us that x is orthogonal to 1.

For future reference, let us note that kp1k2=
Z
−1

1

t2dt=
2
3
.

� Starting with x, Gram�Schmidt produces x2−
�

projection of x2
onto spanfp0; p1g

�
= x2− hx

2; p0i
hp0; p0i

p0−
hx2; p1i
hp1; p1i

p1

=x2− 1
2

Z
−1

1

t2dt− x
2/3

Z
−1

1

t3dt=x2− 1
3
.

Hence, standardizing, p2(x)=
1

2
(3x2− 1).

Comment. The previous problem told us that x2 is orthogonal to x (but not to 1).

� Continuing, we find p3(x)=
1

2
(5x3− 3x) and p4(x)= 1

8
(35x4− 30x2+3).

Comment. These famous polynomials are known as the Legendre polynomials. The Legendre polynomial pn
is an even function if n is even, and an odd function if n is odd (can you explain why?!).

An explicit formula is pn(x)= 2−n
P

k=0
n �

n
k

�2
(x+1)k(x− 1)n−k.

For instance, p2(x)=
1

4
((x− 1)2+22(x− 1)(x+1)+ (x+1)2) =

1

2
(3x2− 1).

https://en.wikipedia.org/wiki/Legendre_polynomials

Comment. Legendre polynomials are an example of orthogonal polynomials. Each choice of dot product gives
rise to a family of such orthogonal polynomials.
https://en.wikipedia.org/wiki/Orthogonal_polynomials

Comment. It is also particularly natural to consider the dot product (1), where the integral is from 0 to 1. In
that case, we obtain what's known as the shifted Legendre polynomials p~n(x)= pn(2x− 1).

Comment on other norms. Our choice of inner product

hf ; gi=
Z
a

b

f(t)g(t)dt

for (square-integrable) functions on [a; b] gives rise to the norm kf k=
(R
a
b
f(t)2dt

�1/2. This is known as the
L2-norm (and often written as kf k2).
It is the continuous analog of the usual Euclidean norm kvk=(v1

2+ v2
2+ :::)1/2 (known as `2-norm).

There do exist other norms to measure the magnitude of vectors, such as the `1-norm kvk1= jv1j+ jv2j+ :::
or, more generally, for p> 1, the `p-norms kvkp=(jv1jp+ jv2jp+ :::)1/p.

Likewise, for functions, we have the Lp-norms kf kp=
(R
a
b
f(t)pdt

�1/p.
Only in the case p = 2 do these norms come from an inner product. That's a mathematical (as opposed to
geometric) reason why we especially care about that case.
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