
Homework Set 10 (Lecture 32)

Problem 1

Example 20. Find the smallest norm solution to 4x1+3x2+5x3=3.
Solution. If A= [ 4 3 5 ], then the smallest norm solution is x=A+[ 3 ].

From earlier computations (see Example 163) we know that A+= 1
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Hence, the smallest norm solution is x=A+[ 3 ] =
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Problem 2

Example 21. Determine the best rank 1 approximation of A=

24 1 −2
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1 0

35.
Solution. We first compute the SVD of A:

� First, we need to diagonalize ATA=
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Hence, the eigenvalues of ATA are 6; 1.
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Hence, the 6-eigenspace has basis
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Hence, the 1-eigenspace has basis
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Thus ATA=PDPT with D=
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[We have to normalize the eigenvectors! Otherwise, we would only have a diagonalization PDP−1.]

� Since ATA=V �2V T , we conclude that V =
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and �=
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� From Avi= �iui, we find u1=
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For the rank 1 approximation, we only need the first column of U , so we stop here.

Hence, A=U�V T with U =
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From the SVD of A, we obtain the best rank 1 approximation by only using the first columns of U and V (and
truncating � to a 1� 1 matrix):

Thus, the best rank 1 approximation of A is 1
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Comment. Like for U , we could have omitted the computation of the 1-eigenvector (second column of V ).
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