
Sketch of Lecture 29 Mon, 4/13/2020

Review. SVD
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Comment. In contrast to our previous example, rank(A) = 1. It follows that ATA has eigenvalue 0, so that 0
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We cannot obtain u2 in the same way because �2=0. Since for every vector u2, Av2= �2u2, we can choose
u2 as we wish, as long as the columns of U are orthonormal in the end.
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Check. Do check that, indeed, A=U�V T .

Example 152. Determine the SVD of A=
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Solution. ATA=
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u3 is chosen so that the matrix U is orthogonal. Hence, u3=
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How did we find u3? We already have the vectors u1 and u2, and need a vector orthogonal to both.

That is, we need to find the vector spanning span
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[Without the intermediate steps, can you see why the null space consists of precisely the vectors orthogonal to
both u1 and u2?]
More generally, proceeding like this, we can always fill in �missing� vectors ui to obtain an orthonormal basis
u1;u2; :::;um that we can use as the columns of U .
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