Review. SVD

Example 151. Determine the SVD of $A = \begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix}$.

Comment. In contrast to our previous example, rank(A) = 1. It follows that $A^T A$ has eigenvalue 0, so that 0 is a singular value of A.

Solution.
$$A^T A = \begin{bmatrix} 5 & 5 \\ 5 & 5 \end{bmatrix}$$
 has 10-eigenvector $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and 0-eigenvector $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$.
We conclude that $V = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ and $\Sigma = \begin{bmatrix} \sqrt{10} \\ 0 \end{bmatrix}$.
 $u_1 = \frac{1}{\sigma_1} A v_1 = \frac{1}{\sqrt{10}} \begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{\sqrt{20}} \begin{bmatrix} 4 \\ 2 \end{bmatrix} = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.
We cannot obtain u_2 in the same way because $\sigma_2 = 0$. Since for every vector u_2 , $Av_2 = \sigma_2 u_2$, we can choose u_2 as we wish, as long as the columns of U are orthonormal in the end.

$$\begin{split} & u_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} -1\\2 \end{bmatrix} \text{ (but } u_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} 1\\-2 \end{bmatrix} \text{ works just as well)} \\ & \text{Hence, } U = \frac{1}{\sqrt{5}} \begin{bmatrix} 2&-1\\1&2 \end{bmatrix}. \\ & \text{In summary, } A = U\Sigma V^T \text{ with } U = \frac{1}{\sqrt{5}} \begin{bmatrix} 2&-1\\1&2 \end{bmatrix}, \Sigma = \begin{bmatrix} \sqrt{10}\\0 \end{bmatrix}, V = \frac{1}{\sqrt{2}} \begin{bmatrix} 1&-1\\1&1 \end{bmatrix}. \end{split}$$

Check. Do check that, indeed, $A = U\Sigma V^T$.

Example 152. Determine the SVD of $A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$. **Solution.** $A^T A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ has 3-eigenvector $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$ and 1-eigenvector $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Since $A^T A = V \Sigma^T \Sigma V^T$, we conclude that $V = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$ and $\Sigma = \begin{bmatrix} \sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$. $u_1 = \frac{1}{\sigma_1} A v_1 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} -2 \\ 1 \\ -1 \end{bmatrix}$ $u_2 = \frac{1}{\sigma_2} A v_2 = \frac{1}{1} \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ u_3 is chosen so that the matrix U is orthogonal. Hence, $u_3 = \frac{1}{\sqrt{3}} \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$ (or $u_3 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$). Hence, $U = \begin{bmatrix} -2/\sqrt{6} & 0 & -1/\sqrt{3} \\ 1/\sqrt{6} & 1/\sqrt{2} & -1/\sqrt{3} \\ -1/\sqrt{6} & 1/\sqrt{2} & -1/\sqrt{3} \end{bmatrix}$, $\Sigma = \begin{bmatrix} \sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$, $V = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$. How did we find u_3 ? We already have the vectors u_1 and u_2 , and need a vector orthogonal to both.

That is, we need to find the vector spanning span $\left\{ \begin{bmatrix} -2\\1\\-1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}^{\perp} = \operatorname{col}\left(\begin{bmatrix} -2&0\\1&1\\-1&1 \end{bmatrix} \right)^{\perp} = \operatorname{null}\left(\begin{bmatrix} -2&1&-1\\0&1&1 \end{bmatrix} \right).$

[Without the intermediate steps, can you see why the null space consists of precisely the vectors orthogonal to both u_1 and u_2 ?]

More generally, proceeding like this, we can always fill in "missing" vectors u_i to obtain an orthonormal basis $u_1, u_2, ..., u_m$ that we can use as the columns of U.