
Sketch of Lecture 28 Fri, 4/10/2020

Extra: More details on the spectral theorem

Let us add hv ;wi to our notations for the dot product: hv ;wi= vTw=v �w.

� In our story of orthogonality, the important player has been the dot product. However, one could argue
that the fundamental quantity is actually the norm:
hv;wi= 1

4
(kv+wk2−kv−wk2). See Example 22.

� Accepting the dot product as immensely important, we see that symmetric matrices (i.e. matrices A such
that A=AT) are of interest.
For any matrix A, hAv ;wi= hv; ATwi.
It follows that, a matrix A is symmetric if and only if hAv ;wi= hv ; Awi for all vectors v;w.

� Similarly, let Q be an orthogonal matrix (i.e. Q is a square matrix with QTQ= I).
Then, hQv ; Qwi= hv;wi.
In fact, a matrix A is orthogonal if and only if hAv; Awi= hv ;wi for all vectors v ;w.
Comment. We observed in Example 142 that orthogonal matrices Q correspond to rotations (detQ=1)
or reflections (detQ=−1) [or products thereof]. The equality hQv; Qwi= hv ;wi encodes the fact that
these types (and only these!) of geometric transformations preserve angles and lengths.

(Spectral theorem)
A n�n matrix A is symmetric if and only if it can be decomposed as A=PDPT , where

� D is a diagonal matrix, (n�n)

The diagonal entries �i are the eigenvalues of A.

� P is orthogonal. (n�n)

The columns of P are eigenvectors of A.

Note that, in particular, A is always diagonalizable, the eigenvalues (and hence, the eigenvectors) are all real,
and, most importantly, the eigenspaces of A are orthogonal.
The �only if� part says that, if A is symmetric, then we get a diagonalization A = PDPT . The �if� part says
that, if A=PDPT , then A is symmetric (which follows from AT =(PDPT)T =(PT)TDTPT =PDPT =A).

Let us prove the following important parts of the spectral theorem.

Theorem 149.

(a) If A is symmetric, then the eigenspaces of A are orthogonal.

(b) If A is real and symmetric, then the eigenvalues of A are real.

Proof.

(a) We need to show that, if v and w are eigenvectors of A with different eigenvalues, then hv;wi=0.
Suppose that Av=�v and Aw= �w with �=/ �.

Then, �hv;wi= h�v;wi= hAv ;wi= hv ; ATwi= hv ; Awi= hv; �wi= �hv;wi.
However, since �=/ �, �hv;wi= �hv;wi is only possible if hv;wi=0.

(b) Suppose � is a nonreal eigenvalue with nonzero eigenvector v. Then, v� is a ��-eigenvector and, since
�=/ ��, we have two eigenvectors with different eigenvalues. By the first part, these two eigenvectors must
be orthogonal in the sense that v�Tv = 0. But v�Tv = v�v = kvk2=/ 0. This shows that it is impossible
to have a nonzero eigenvector for a nonreal eigenvalue. �

Armin Straub
straub@southalabama.edu

65



Let us highlight the following point we used in our proof:

Let A be a real matrix. If v is a �-eigenvector, then v� is a ��-eigenvector.

See, for instance, Example 83. This is just a consequence of the basic fact that we cannot algebraically distinguish
between +i and −i.

Singular value decomposition

(Singular value decomposition)
Every m�n matrix A can be decomposed as A=U�V T , where

� � is a (rectangular) diagonal matrix with nonnegative entries, (m�n)

The diagonal entries �i are called the singular values of A.

� U is orthogonal, (m�m)

� V is orthogonal. (n�n)

Comment. If A is symmetric, then the singular value decomposition is already provided by the spectral theorem
(the diagonalization of A). Moreover, in that case, V =U .
Important observations. If A=U�V T , then ATA= V �T�V T .

� Note that �T� is an n�n diagonal matrix. Its entries are �i
2 (the squares of the entries in �).

� ATA is a symmetric matrix! (Why?!) Hence, by the spectral theorem, we are able to find V and �T�.

In other words, V is obtained from the (orthonormally chosen) eigenvectors of ATA. Likewise, the entries of
�T� are the eigenvalues of ATA; their square roots are the entries of �, the singular values.
Finally, the equation AV =U� allows us to determine U . How?! (Hint: Avi=�iui)

This results in the following recipe to determine the SVD A=U�V T for any matrix A.
Find an orthonormal basis of eigenvectors vi of ATA. Let �i be the eigenvalue of vi.

� V is the matrix with columns vi.

� � is the diagonal matrix with entries �i= �i
p

.

� U is the matrix with columns ui=
1

�i
Avi. If needed, fill in additional columns to make U orthogonal.

Example 150. Determine the SVD of A=
�

2 2
−1 1

�
.

Solution. ATA=
�
5 3
3 5

�
has 8-eigenvector

�
1
1

�
and 2-eigenvector

�
−1
1

�
.

Since ATA=V �2V T (here, �T�=�2), we conclude that V =
1

2
p

�
1 −1
1 1

�
and �=

"
8

p

2
p

#
.

From Avi= �iui, we find u1=
1

�1
Av1=

1

8
p

�
2 2
−1 1

�
1

2
p

�
1
1

�
=

�
1
0

�
.

Likewise, u2=
1

�2
Av2=

1

2
p

�
2 2
−1 1

�
1

2
p

�
−1
1

�
=

�
0
1

�
. Hence, U =

�
1 0
0 1

�
. Check that, indeed, A=U�V T !

Comment. For applications, it is common to arrange the singular values in decreasing order like we did.

Comment. If we had chosen V =
1

2
p

�
−1 −1
−1 1

�
instead, then U =

�
−1 0
0 1

�
and �=

"
8

p

2
p

#
.

As with diagonalization, there are choices! (A lot fewer choices though.) This is another perfectly fine SVD. In
fact, it's what Sage computes below.
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Sage. Let's have Sage do the work for us. In Sage, the SVD is currently only implemented for
floating point numbers. (RDF is the real numbers as floating point numbers with double precision)

Sage] A = matrix(RDF, [[2,2],[-1,1]])

Sage] U,S,V = A.SVD()

Sage] U"
−1.0 1.11022302463� 10−16

8.64109131471� 10−17 1.0

#

Sage] S�
2.82842712475 0.0

0.0 1.41421356237

�
Sage] V�

−0.707106781187 −0.707106781187
−0.707106781187 0.707106781187

�
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