Sketch of Lecture 33 Fri, 4/13/2018

Example 161. J = { . } sends { ; } to J{ ; } :[ v } What is the geometric description

of this linear map? What are the eigenvalues and eigenvectors?

Solution. Geometrically, this is a rotation by 90°. This makes it clear that, for no vector x in R?, we will
have Jx = Ax; in fact, Jx and @ will always be orthogonal!

In other words, J does not have any real (!!) eigenvectors.
Let's go through the math to find complex eigenstuff:

The characteristic polynomial is ‘ 71>‘ :; ‘ =X2+1, and so A has eigenvalues =+i.

The i-eigenspace is null([ — :1 D has basis [ ; } (Indeed, J{ ; }:{ _1.1 }IZ{ ! })

1 1
The —i-eigenspace is null({ i 71,1 D has basis [ 712' } (The exact same, with all i replaced with —i.)

Important comment. Since we cannot algebraically distinguish between +i, we also cannot distinguish
between z and Z. This explains that, if we start with a real problem, complex quantities always show up
together with their conjugate.

For instance, in this example we saw that [ ]‘ } is a i-eigenvector of [ ? ’0‘ }

Replacing all i's by —i's, we get that { 71( } is a —i-eigenvector of [ ? B‘ } As we knew already.

| Let A be a real matrix. If v is a \-eigenvector, then @ is a \-eigenvector.

See, for instance, Example 161. This is just a consequence of the fact that we cannot algebraically distinguish
between +i and —i.

Example 162. Show that a symmetric real matrix A must have real eigenvalues.

This statement is part of the spectral theorem.

Solution. Suppose \ is a nonreal eigenvalue with nonzero eigenvector v. Then, © is a A-eigenvector and,
since A\ # )\, we have two eigenvectors with different eigenvalues. Our computation in Example 109, shows
that these two eigenvectors must be orthogonal in the sense that ©7v =0. But o v =v*v = ||v]|?#0. This
shows that it is impossible to have an nonzero eigenvector for a nonreal eigenvalue.

| Euler’s formula |

Recall that a point (x, y) can be represented using polar coordinates (7, #), where r is the
distance to the origin and @ is the angle with the z-axis.

Then, x =1 cosf and y = r sinf.

Every complex number z can be written in polar form as z =re®, with r=|z|.

Why? By comparing with the usual polar coordinates (z = r cosf and y = r sinf), it only makes sense to
write z =z + iy as z=re'? if re’? =7 cosh + irsind. This is Euler’s identity:
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Theorem 163. (Euler’s identity) e?’ = cos(6) +isin(f)

e Write down both sides of Euler's identity for 6 =0, 6 :g and 6 = .
In particular, with z = 7, we get or e™+1=0 (which connects all five fundamental

constants).

e Realize that the complex number cos(6) + i sin(f) corresponds to the point (cos(6), sin(8)).

These are precisely the points on the unit circle!

e How can we make sense of the e’ in Euler’s identity? Using the Taylor series, just as we did for e:
e = (im)™ . I A
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Example 164. Where do trig identities like sin(2x) = 2cos(z)sin(z) or sin?(z) = y
(and infinitely many others you have never heard of!) come from?
Short answer: they all come from the simple exponential law e* ™Y = eV,
Let us illustrate this in the simple case (¢*)? = e?*. Observe that
e = cos(2x) +isin(2x)
e'®e'® = [cos(x) +isin(x)]? = cos?(x) — sin?(z) + 2i cos(z)sin(z).
Comparing imaginary parts (the “stuff with an "), we conclude that sin(2z) = 2cos(z)sin(z).
Likewise, comparing real parts, we read off cos(2x) = cos?(z) — sin?(x).
(Use cos?(z) 4 sin?(z) =1 to derive sin?(z) :17+’(2‘) from the last equation.)
Challenge. Can you find a triple-angle trig identity for cos(3xz) and sin(3z) using (e%)3 = 377
Or, use e'(*+¥) = ¢i7¢iV to derive cos(z + ) = cos(z)cos(y) — sin(z)sin(y) and sin(z + y) = ... (that's what
we actually did in class).
Example 165. Solve the differential equation
0 —1 1
/
= 0)= .
Y ll 0 }y, y(0) [0]
Solution. From Example 161, we know that A= PDP~! with P:{ i *1’ ], D:{ é Ei ]
The system is therefore solved by:
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Using Euler's theorem, we can rewrite this solution in terms of cos(t) and sin(¢). For instance, e'! + e~ =
(cos(t) +isin(t)) 4 (cos(—t) + sin(—t)) = 2cos(t).
In conclusion, y(t) :{ z:’s((:)) } (Check by plugging into the differential equation!)
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