Example 161. $J = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ sends $\begin{bmatrix} x \\ y \end{bmatrix}$ to $J \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -y \\ x \end{bmatrix}$. What is the geometric description of this linear map? What are the eigenvalues and eigenvectors?

Solution. Geometrically, this is a rotation by 90°. This makes it clear that, for no vector x in \mathbb{R}^2 , we will have $Jx = \lambda x$; in fact, Jx and x will always be orthogonal!

In other words, J does not have any real (!!) eigenvectors.

Let's go through the math to find complex eigenstuff:

The characteristic polynomial is $\begin{vmatrix} -\lambda & -1 \\ 1 & -\lambda \end{vmatrix} = \lambda^2 + 1$, and so A has eigenvalues $\pm i$.

The *i*-eigenspace is $\operatorname{null}\left(\left[\begin{array}{cc} -i & -1\\ 1 & -i \end{array}\right]\right)$ has basis $\left[\begin{array}{c} i\\ 1 \end{array}\right]$. (Indeed, $J\left[\begin{array}{c} i\\ 1 \end{array}\right] = \left[\begin{array}{c} -1\\ i \end{array}\right] = i\left[\begin{array}{c} i\\ 1 \end{array}\right]$.)

The -i-eigenspace is $\operatorname{null}\left(\left[\begin{array}{cc}i & -1\\ 1 & i\end{array}\right]\right)$ has basis $\left[\begin{array}{cc}-i\\ 1\end{array}\right]$. (The exact same, with all i replaced with -i.)

Important comment. Since we cannot algebraically distinguish between $\pm i$, we also cannot distinguish between z and \overline{z} . This explains that, if we start with a real problem, complex quantities always show up together with their conjugate.

For instance, in this example we saw that $\begin{bmatrix} i \\ 1 \end{bmatrix}$ is a *i*-eigenvector of $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. Replacing all *i*'s by -i's, we get that $\begin{bmatrix} -i \\ -i \end{bmatrix}$ is a -i-eigenvector of $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. As we knew already.

Let A be a real matrix. If v is a λ -eigenvector, then \bar{v} is a $\bar{\lambda}$ -eigenvector.

See, for instance, Example 161. This is just a consequence of the fact that we cannot algebraically distinguish between +i and -i.

Example 162. Show that a symmetric real matrix A must have real eigenvalues.

This statement is part of the spectral theorem.

Solution. Suppose λ is a nonreal eigenvalue with nonzero eigenvector v. Then, \bar{v} is a λ -eigenvector and, since $\lambda \neq \bar{\lambda}$, we have two eigenvectors with different eigenvalues. Our computation in Example 109, shows that these two eigenvectors must be orthogonal in the sense that $\bar{v}^T v = 0$. But $\bar{v}^T v = v^* v = ||v||^2 \neq 0$. This shows that it is impossible to have an nonzero eigenvector for a nonreal eigenvalue.

Euler's formula

Recall that a point (x, y) can be represented using **polar coordinates** (r, θ) , where r is the distance to the origin and θ is the angle with the x-axis.

Then, $x = r \cos\theta$ and $y = r \sin\theta$.

Every complex number z can be written in **polar form** as $z = re^{i\theta}$, with r = |z|.

Why? By comparing with the usual polar coordinates $(x = r \cos\theta \text{ and } y = r \sin\theta)$, it only makes sense to write z = x + iy as $z = re^{i\theta}$ if $re^{i\theta} = r \cos\theta + ir \sin\theta$. This is Euler's identity:

Theorem 163. (Euler's identity) $e^{i\theta} = \cos(\theta) + i\sin(\theta)$

- Write down both sides of Euler's identity for θ = 0, θ = π/2 and θ = π.
 In particular, with x = π, we get e^{πi}=-1 or e^{iπ} + 1 = 0 (which connects all five fundamental constants).
- Realize that the complex number $\cos(\theta) + i \sin(\theta)$ corresponds to the point $(\cos(\theta), \sin(\theta))$. These are precisely the points on the unit circle!
- How can we make sense of the $e^{i\theta}$ in Euler's identity? Using the Taylor series, just as we did for e^A :

$$e^{ix} = \sum_{n=0}^{\infty} \frac{(ix)^n}{n!} = 1 + ix - \frac{x^2}{2} - i\frac{x^3}{3!} + \frac{x^4}{4!} + i\frac{x^5}{5!} + \dots$$
$$\cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \dots \qquad \sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$$

Example 164. Where do trig identities like $\sin(2x) = 2\cos(x)\sin(x)$ or $\sin^2(x) = \frac{1-\cos(2x)}{2}$ (and infinitely many others you have never heard of!) come from?

Short answer: they all come from the simple exponential law $e^{x+y} = e^x e^y$.

Let us illustrate this in the simple case $(e^x)^2 = e^{2x}$. Observe that

$$e^{2ix} = \cos(2x) + i\sin(2x)$$

$$e^{ix}e^{ix} = [\cos(x) + i\sin(x)]^2 = \cos^2(x) - \sin^2(x) + 2i\cos(x)\sin(x)$$

Comparing imaginary parts (the "stuff with an *i*"), we conclude that $\sin(2x) = 2\cos(x)\sin(x)$. Likewise, comparing real parts, we read off $\cos(2x) = \cos^2(x) - \sin^2(x)$.

(Use $\cos^2(x) + \sin^2(x) = 1$ to derive $\sin^2(x) = \frac{1 - \cos(2x)}{2}$ from the last equation.)

Challenge. Can you find a triple-angle trig identity for $\cos(3x)$ and $\sin(3x)$ using $(e^x)^3 = e^{3x}$? Or, use $e^{i(x+y)} = e^{ix}e^{iy}$ to derive $\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$ and $\sin(x+y) = \dots$ (that's what we actually did in class).

Example 165. Solve the differential equation

$$\boldsymbol{y}' = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \boldsymbol{y}, \qquad \boldsymbol{y}(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Solution. From Example 161, we know that $A = PDP^{-1}$ with $P = \begin{bmatrix} i & -i \\ 1 & 1 \end{bmatrix}$, $D = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$. The system is therefore solved by:

$$\begin{aligned} \boldsymbol{y}(t) &= Pe^{Dt}P^{-1} \begin{bmatrix} 1\\0 \end{bmatrix} = \begin{bmatrix} i & -i\\1 & 1 \end{bmatrix} \begin{bmatrix} e^{it}\\e^{-it} \end{bmatrix} \frac{1}{2i} \begin{bmatrix} 1 & i\\-1 & i \end{bmatrix} \begin{bmatrix} 1\\0 \end{bmatrix} \\ &= \frac{1}{2i} \begin{bmatrix} i & -i\\1 & 1 \end{bmatrix} \begin{bmatrix} e^{it}\\e^{-it} \end{bmatrix} \begin{bmatrix} 1\\-1 \end{bmatrix} = \frac{1}{2i} \begin{bmatrix} i & -i\\1 & 1 \end{bmatrix} \begin{bmatrix} e^{it}\\-e^{-it} \end{bmatrix} = \frac{1}{2i} \begin{bmatrix} ie^{it}+ie^{-it}\\e^{it}-e^{-it} \end{bmatrix} \\ &= \frac{1}{2} \begin{bmatrix} e^{it}+e^{-it}\\-ie^{it}+ie^{-it} \end{bmatrix} \end{aligned}$$

Using Euler's theorem, we can rewrite this solution in terms of $\cos(t)$ and $\sin(t)$. For instance, $e^{it} + e^{-it} = (\cos(t) + i\sin(t)) + (\cos(-t) + \sin(-t)) = 2\cos(t)$.

In conclusion, $y(t) = \begin{bmatrix} \cos(t) \\ \sin(t) \end{bmatrix}$. (Check by plugging into the differential equation!)