
Sketch of Lecture 33 Fri, 4/13/2018

Example 161. J =
�
0 ¡1
1 0

�
sends

�
x
y

�
to J

�
x
y

�
=

�
¡y
x

�
. What is the geometric description

of this linear map? What are the eigenvalues and eigenvectors?

Solution. Geometrically, this is a rotation by 90�. This makes it clear that, for no vector x in R2, we will
have Jx=�x; in fact, Jx and x will always be orthogonal!
In other words, J does not have any real (!!) eigenvectors.
Let's go through the math to �nd complex eigenstu�:

The characteristic polynomial is
���� ¡� ¡1
1 ¡�

����= �2+1, and so A has eigenvalues �i.

The i-eigenspace is null
��

¡i ¡1
1 ¡i

��
has basis

�
i
1

�
. (Indeed, J

�
i
1

�
=

�
¡1
i

�
= i

�
i
1

�
.)

The ¡i-eigenspace is null
��

i ¡1
1 i

��
has basis

�
¡i
1

�
. (The exact same, with all i replaced with ¡i.)

Important comment. Since we cannot algebraically distinguish between �i, we also cannot distinguish
between z and z�. This explains that, if we start with a real problem, complex quantities always show up
together with their conjugate.

For instance, in this example we saw that
�
i
1

�
is a i-eigenvector of

�
0 ¡1
1 0

�
.

Replacing all i's by ¡i's, we get that
�
¡i
1

�
is a ¡i-eigenvector of

�
0 ¡1
1 0

�
. As we knew already.

Let A be a real matrix. If v is a �-eigenvector, then v� is a ��-eigenvector.

See, for instance, Example 161. This is just a consequence of the fact that we cannot algebraically distinguish
between +i and ¡i.

Example 162. Show that a symmetric real matrix A must have real eigenvalues.

This statement is part of the spectral theorem.

Solution. Suppose � is a nonreal eigenvalue with nonzero eigenvector v. Then, v� is a ��-eigenvector and,
since �=/ ��, we have two eigenvectors with di�erent eigenvalues. Our computation in Example 109, shows
that these two eigenvectors must be orthogonal in the sense that v�Tv=0. But v�Tv=v�v= kvk2=/ 0. This
shows that it is impossible to have an nonzero eigenvector for a nonreal eigenvalue.

Euler's formula

Recall that a point (x; y) can be represented using polar coordinates (r; �), where r is the
distance to the origin and � is the angle with the x-axis.

Then, x= r cos� and y= r sin�.

Every complex number z can be written in polar form as z= rei�, with r= jz j.

Why? By comparing with the usual polar coordinates (x = r cos� and y = r sin�), it only makes sense to
write z=x+ iy as z= rei� if rei�= r cos�+ ir sin�. This is Euler's identity:
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Theorem 163. (Euler's identity) ei�= cos(�)+ i sin(�)

� Write down both sides of Euler's identity for �=0, �= �

2
and �= �.

In particular, with x = �, we get e�i=¡1 or ei� + 1 = 0 (which connects all �ve fundamental
constants).

� Realize that the complex number cos(�)+ i sin(�) corresponds to the point (cos(�); sin(�)).
These are precisely the points on the unit circle!

� How can we make sense of the ei� in Euler's identity? Using the Taylor series, just as we did for eA:

eix=
X
n=0

1
(ix)n

n!
= 1+ ix¡ x2

2
¡ i x

3

3!
+
x4

4!
+ i

x5

5!
+ :::

cos(x)=
X
n=0

1
(¡1)n
(2n)!

x2n=1¡ x2

2
+
x4

4!
¡ ::: sin(x)=

X
n=0

1
(¡1)n
(2n+1)!

x2n+1= x¡ x3

3!
+
x5

5!
¡ :::

Example 164. Where do trig identities like sin(2x) = 2cos(x)sin(x) or sin2(x) = 1¡ cos(2x)
2

(and in�nitely many others you have never heard of!) come from?
Short answer: they all come from the simple exponential law ex+y= exey.
Let us illustrate this in the simple case (ex)2= e2x. Observe that

e2ix = cos(2x) + i sin(2x)
eixeix = [cos(x) + i sin(x)]2= cos2(x)¡ sin2(x)+ 2i cos(x)sin(x):

Comparing imaginary parts (the �stu� with an i�), we conclude that sin(2x)= 2cos(x)sin(x).
Likewise, comparing real parts, we read o� cos(2x) = cos2(x)¡ sin2(x).

(Use cos2(x)+ sin2(x)= 1 to derive sin2(x)= 1¡ cos(2x)
2

from the last equation.)

Challenge. Can you �nd a triple-angle trig identity for cos(3x) and sin(3x) using (ex)3= e3x?

Or, use ei(x+y)= eixeiy to derive cos(x+ y)= cos(x)cos(y)¡ sin(x)sin(y) and sin(x+ y)= ::: (that's what
we actually did in class).

Example 165. Solve the di�erential equation

y 0=

�
0 ¡1
1 0

�
y; y(0)=

�
1
0

�
:

Solution. From Example 161, we know that A=PDP¡1 with P =
�
i ¡i
1 1

�
, D=

�
i 0
0 ¡i

�
.

The system is therefore solved by:

y(t) = PeDtP¡1
�
1
0

�
=

�
i ¡i
1 1

�"
eit

e¡it

#
1
2i

�
1 i
¡1 i

��
1
0

�
=

1
2i

�
i ¡i
1 1

�"
eit

e¡it

#�
1
¡1

�
=
1
2i

�
i ¡i
1 1

�"
eit

¡e¡it

#
=
1
2i

"
ieit+ ie¡it

eit¡ e¡it

#

=
1
2

"
eit+ e¡it

¡ieit+ ie¡it

#

Using Euler's theorem, we can rewrite this solution in terms of cos(t) and sin(t). For instance, eit+ e¡it=
(cos(t)+ i sin(t))+ (cos(¡t)+ sin(¡t))= 2cos(t).

In conclusion, y(t)=
�
cos(t)
sin(t)

�
. (Check by plugging into the di�erential equation!)
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