
Sketch of Lecture 16 Wed, 2/21/2018

Theorem 86. (spectral theorem, compact version) A symmetric matrix A can always be
diagonalized as A=PDPT , where P is orthogonal and D is diagonal (and both are real).

How? We proceed as in the diagonalizationA=PDP¡1. We then arrange P to be orthogonal, by normalizing
its columns. If there is a repeated eigenvalue, then we also need to make sure to pick an orthonormal basis
for the corresponding eigenspace (for instance, using Gram�Schmidt).
Advanced comment. A matrix such that ATA=AAT is called normal. In a similar spirit as in Example 94
one can show that, for normal matrices, the eigenspaces are orthogonal to each other. However, normal
matrices which are not symmetric will always have complex eigenvalues. (In that case, the orthogonal matrix
P gets replaced with a unitary matrix, the complex version of orthogonal matrices, and the PT becomes the
conjugate transpose P�=P�T .)

Example 87. (warmup) What are the eigenvalues and eigenvectors of the 3� 3 identity?
Solution. The eigenvalues are 1; 1; 1. The 1-eigenspace is all of R3. (In other words, every vector is a 1-
eigenvector.)

Example 88. (warmup) A =
�
0 1
1 0

�
sends

�
x
y

�
to A

�
x
y

�
=

�
y
x

�
. What is the geometric

description of this linear map? What are the eigenvalues and eigenvectors?
Diagonalize A as PDPT .
Solution. Geometrically, this is a re�ection through the line y=x. Make a sketch!

This description makes it obvious that
�
1
1

�
is a 1-eigenvector, and

�
¡1
1

�
is a ¡1-eigenvector.

(Of course, we can also just compute these. But do make sure that this is obvious geometrically.)
To get an orthogonal matrix P , we normalize

�
1
1

�
;
�
¡1
1

�
to 1

2
p

�
1
1

�
;
1

2
p

�
¡1
1

�
.

Hence, for the diagonalization of A as A=PDPT , we can choose P =
1

2
p

�
1 ¡1
1 1

�
and D=

�
1 0
0 ¡1

�
.

Important comment. For the diagonalization of A as A= PDP¡1, we can just choose P =
�
1 ¡1
1 1

�
and

D=
�
1 0
0 ¡1

�
. However, P is not orthogonal and so P¡1=/ PT (in fact, P¡1= 1

2

�
1 1
¡1 1

�
=
1

2
PT). That's

why we need to normalize the columns of P for the diagonalization A=PDPT .
Comment. Note that the language of eigenthings makes it easy to identify and construct re�ections (and
other geometric transformations). See next example.
Comment. Note that the determinant of A is ¡1. Areas are preserved but the orientation is changed.

Example 89. (extra) Diagonalize the symmetric matrix A=
�
1 3
3 ¡7

�
as A=PDPT .

Solution. The characteristic polynomial is
���� 1¡� 3

3 ¡7¡�

����=(1¡�)(¡7¡�)¡ 9= (�+8)(�¡ 2), and so A
has eigenvalues ¡8; 2.
The 2-eigenspace is null

��
¡1 3
3 ¡9

��
has basis

�
3
1

�
. Normalized: 1

10
p

�
3
1

�
The ¡8-eigenspace is null

��
9 3
3 1

��
has basis

�
¡1
3

�
. Normalized: 1

10
p

�
¡1
3

�
Hence, if P =

1

10
p

�
3 ¡1
1 3

�
and D=

�
2 0
0 ¡8

�
, then A=PDPT .

Important observation. The 2-eigenvector
�
3
1

�
and the ¡8-eigenvector

�
¡1
3

�
are indeed orthogonal!

We normalize the two eigenvectors to 1

10
p

�
3
1

�
and 1

10
p

�
¡1
3

�
. These are an orthonormal basis for R2.

Comment (again). Note that we were asked for a diagonalization of the form A = PDPT . For that, the
matrix P must be orthogonal. In particular, we must normalize its columns! (Otherwise, we only have
A=PDP¡1.)
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Example 90. (review) If A is a 2� 2 matrix with det(A) =¡8 and eigenvalue 4. What is
the second eigenvalue?
Solution. Recall that det(A) is the product of the eigenvalues (see below). Hence, the second eigenvalue is
¡2.

det(A) is the product of the eigenvalues of A.

Why? Recall how we determine the eigenvalues �1; �2; :::; �n of an n � n matrix A. We compute the
characteristic polynomial det(A¡�I) and determine the �i as the roots of that polynomial.
That means that we have the factorization det(A ¡ �I) = (�1¡ �)(�n ¡ �)���(�n ¡ �). Now, set �= 0 to
conclude that det(A)=�1�2����n.

Example 91. Diagonalize the symmetric matrix A=
�
1 3
3 1

�
as A=PDPT .

Solution. The characteristic polynomial is
���� 1¡� 3

3 1¡�

����=(�¡ 4)(�+2), and so A has eigenvalues 4;¡2.

The 4-eigenspace is null
��

¡3 3
3 ¡3

��
has basis

�
1
1

�
.

The ¡2-eigenspace is null
��

3 3
3 3

��
has basis

�
¡1
1

�
.

In summary,
�
1
1

�
is a 4-eigenvector, and

�
¡1
1

�
is a ¡2-eigenvector.

Review. The product of all eigenvalues ¡2 � 4=¡8 always equals the determinant det(A)= 1¡ 9=¡8.

Example 92. Sketch the e�ect of x 7!Ax with A=
�
1 3
3 1

�
in the following two ways:

(a) Where are the standard basis vectors e1=
�
1
0

�
and e2=

�
0
1

�
being sent? Also sketch where the square

spanned by these two vectors is sent.

(b) Repeat using the orthonormal basis v1=
1

2
p

�
1
1

�
and v2=

1

2
p

�
¡1
1

�
.

Solution. See blackboard. Of course, Ae1=
�
1
3

�
and Ae2=

�
3
1

�
. This means that the square spanned by

e1;e2 (a square) is sent to the parallelogram spanned by
�
1
3

�
;
�
3
1

�
. Moreover, if we keep track of the sides,

we see that the parallelogram is �ipped.
In the second case, the vectors v1 and v2 just get stretched (by a factor of 4 and ¡2, respectively). In
particular, the square spanned by v1;v2 is sent to a rectangle.
Important comment. The second sketch makes the geometric interpretation of the determinant (det(A)=
¡8) plainly visible. Namely, areas get increased by a factor of 8 (the 1 � 1 square is mapped to a 4 � 2
rectangle). The negative sign indicates that the square also gets �ipped.

Example 93. (extra) Diagonalize the symmetric matrix A=

24 1 2 0
2 1 2
0 2 1

35 as A=PDPT .

Solution. (�nal solution only)

A=PDPT with P =

264 1/2 1/2 1/ 2
p

2
p

/2 ¡ 2
p

/2 0

1/2 1/2 ¡1/ 2
p

375 and D=

264 1+ 2 2
p

1¡ 2 2
p

1

375
Comment. Note that we were asked for a diagonalization of the form A=PDPT . For that, the matrix P
must be orthogonal. In particular, we must normalize its columns! (Otherwise, we only have A=PDP¡1.)
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