Sketch of Lecture 12 Wed, 2/7/2018

Example 65. Using Gram—Schmidt, find an orthogonal basis for W =span { 5 J,[

Solution. Let us repeat the previous step so the entire procedure becomes more transparent.
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We begin with the (not orthogonal) basis w1 :{ 5 J wgz{ 0 J wgz{ L J
0 0 1

We then construct an orthogonal basis g1, q2, g3 as follows:
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Make sure you see why g3 is orthogonal to both g1 and g3!

Also note that breaking up the projection onto span{qi, g2} into the projections onto q; and g2 is
only possible because q; and g2 are orthogonal.
0 2 0
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Indeed, { o J,{ o J,{ 1 J is an orthogonal basis of R°.
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If we prefer, we can normalize to obtain an orthonormal basis: { o J,{ o J,ﬁ{ 1 J
0 0 1

It is common and beneficial (slightly less work) to normalize during the Gram—Schmidt process. We do this
in Example 66 below.

The following is just the Gram—Schmidt orthogonalization except that we immediately nor-
malize each vector q;.

(Gram—-Schmidt orthonormalization)
Given a basis wq, wo, ... for W, produce an orthonormal basis q1, qo, ... for W.
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Example 66. Find an orthonormal basis for W' =span { 0 J, { 0 J,{ L J
o] Lol [t

Solution. Let wi, wa, w3 be the vectors spaning W. We then construct an orthonormal basis q1, g2, g3
using Gram—Schmidt orthonormalization as follows:

F o -0-|
e b= g , so that q; = éJ
_0— O
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o by— (1) — (1) -q1 |gq1= gJ,sothatqzz{gJ.
L 0 | L 0 | L O 0
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o b3= 1 — } “q1 |q1— 1 "q2 |q2= (1J -5°thatQ3:ﬁ (1J :
|1 1 1 1 1

J (which, of course, matches the previous example).

A matrix Q has orthonormal columns <<= QTQ=1

Why? Let g1, go, ... be the columns of Q. By the way matrix multiplication works, the entries of Q7Q are
dot products of these columns:
[ — o — ][ 1 |

[—qQT—Jqlqzm =
: |

S O =
oo
oo

Hence, Q7Q = I if and only if the dot products qiqu =0 (that is, the columns are orthogonal), for i # j,
and qlq;=1 (that is, the columns are normalized).

01 0
Example 67. Q= (1) 8 1/(1/5 obtained from the previous example satisfies Q7Q = 1I.
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| The QR decomposition

Just like the LU decomposition encodes the steps of Gaussian elimination, the QR decompo-

sition encodes the steps of Gram—Schmidt.

(QR decomposition) Every m x n matrix A of rank n can be decomposed as A= Q) R, where

e () has orthonormal columns, (m xn)

e R is upper triangular and invertible. (n xn)

How to find Q and R?
e  Gram—Schmidt orthonormalization on (columns of) A, to get (columns of) @

[ ] R: QTA
Why? If A=QR, then QTA = Q”Q R which simplifies to R=QTA (since Q7Q =1).

The decomposition A= Q R is unique if we require the diagonal entries of R to be positive (and this is exactly
what happens when applying Gram—Schmidt).

Practical comment. Actually, no extra work is needed for computing R. All of its entries have been computed
during Gram—Schmidt.

Variations. We can also arrange things so that @ is an m X m orthogonal matrix and R a m X n
upper triangular matrix. This is a tiny bit more work (and not required for many applications): we need to
complement “our” @ with additional orthonormal columns and add corresponding zero rows to R. For square
matrices this makes no difference.

S
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Solution. The first step is Gram—Schmidt orthonormalization on the columns of A. We then use the resulting
orthonormal vectors as the columns of Q.
o

01
We already did Gram—Schmidt in Example 66: from that work, we have Q:{ (1) 8 1/0 3 J
00

01 o0 o fo21] [31 1 1/v2
Hence,R:QTA:{lo 0 0 ] 3(1)1 :[02 1].
{001/\/51/\/§J001 [ooﬁJ
Comment. As commented earlier, the entries of R have actually all been computed during Gram—Schmidt,
so that, if we pay attention, we could immediately write down R (no extra work required). Looking back at
Example 66, can you see this?

O =N

Example 68. Determine the QR decomposition of A:{

[0 1o ][3 11 ] [0 21
Check. Indeed, QR = Lo 02 1 =| 3211 equals A.
B o a

Example 69. (extra) Find the QR decomposition of A:{

— o
S O =

O =N
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Solution. (final answer only) A=QR with @Q=| o0 o 1 |and R=| ¢ ;f vz |-
% 7w O 0 0 1
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Example 70. One practical application of the QR decomposition is solving systems of linear
equations.

Ax=0b < QRCU =b (now, multiply with Q7 from the left)
—  Re=Q"%

The last system is triangular and can be solved by back substitution.

A couple of comments are in order:

If Aisn xXn and invertible, then the “=" is actually a “<=""

The equation Rz = Q7b is always consistent! (Recall that R is invertible.)

Indeed, if A is not n X n or not invertible, then Rz = Qb gives the least squares solutions!

Why? ATAz=A"b <«<—= (QR)TQRz=(QR)™» <= RTRz=R'Q™ <= Rz=0Q"b
SRQTQR

[For the last step we need that R is invertible, which is always the case when A is m x n of rank n.]

So, how does the QR way of solving linear systems compare to our beloved Gaussian elimination (LU)?
It turns out that QR is a little slower than LU but makes up for it in “numerical stability".

What does that mean? When computing numerically, we use floating point arithmetic and approx-
imate each number by an expression of the form 0.1234 - 10716, A certain (fixed) number of bits is
used to store the part 0.1234 (here, 4 decimal places of accuracy) as well as the exponent —16.
Now, here is something terrible that can happen in numerical computations: mathematically, the
quantities  and (x + 1) — 1 are exactly the same. However, numerically, they might not. Take,
for instance, 0.1234 - 10~%. Then, to an accuracy of 4 decimal places, x + 1 = 0.1000 - 10!, so that
(z+1)—1=0.0000. But # 0. We completely lost all the information about x.

To be numerically stable, an algorithm must avoid issues like that.

x is a least squares solution of Ax =50
< Rz=Q"b (where A=QR)
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