
Sketch of Lecture 12 Wed, 2/7/2018

Example 65. Using Gram�Schmidt, �nd an orthogonal basis forW = span
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Solution. Let us repeat the previous step so the entire procedure becomes more transparent.

We begin with the (not orthogonal) basis w1=
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We then construct an orthogonal basis q1; q2; q3 as follows:
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Make sure you see why q3 is orthogonal to both q1 and q2!
Also note that breaking up the projection onto spanfq1; q2g into the projections onto q1 and q2 is
only possible because q1 and q2 are orthogonal.

Indeed,
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3775 is an orthogonal basis of R3.

If we prefer, we can normalize to obtain an orthonormal basis:
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It is common and bene�cial (slightly less work) to normalize during the Gram�Schmidt process. We do this
in Example 66 below.

The following is just the Gram�Schmidt orthogonalization except that we immediately nor-
malize each vector qi.

(Gram�Schmidt orthonormalization)
Given a basis w1;w2; ::: for W , produce an orthonormal basis q1; q2; ::: for W .

� q1=
b1
kb1k

with b1=w1

� q2=
b2
kb2k

with b2=w2¡ (w2 � q1)q1

� q3=
b3
kb3k

with b3=w3¡ (w3 � q1)q1¡ (w3 � q2)q2

� q4= :::
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Example 66. Find an orthonormal basis for W = span
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Solution. Let w1; w2; w3 be the vectors spaning W . We then construct an orthonormal basis q1; q2; q3
using Gram�Schmidt orthonormalization as follows:

� b1=
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We have found the orthonormal basis:
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3775 (which, of course, matches the previous example).

A matrix Q has orthonormal columns () QTQ= I

Why? Let q1; q2; ::: be the columns of Q. By the way matrix multiplication works, the entries of QTQ are
dot products of these columns:264 ¡¡ q1

T ¡¡
¡¡ q2

T ¡¡
���

375
24 j j
q1 q2 ���
j j

35=
24 1 0 0
0 1 0
0 0 ���

35
Hence, QTQ= I if and only if the dot products qiTqj = 0 (that is, the columns are orthogonal), for i=/ j,
and qiTqi=1 (that is, the columns are normalized).

Example 67. Q=

26664
0 1 0
1 0 0

0 0 1/ 2
p

0 0 1/ 2
p

37775 obtained from the previous example satis�es QTQ= I.
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The QR decomposition

Just like the LU decomposition encodes the steps of Gaussian elimination, the QR decompo-
sition encodes the steps of Gram�Schmidt.

(QR decomposition) Everym�n matrix A of rank n can be decomposed as A=QR, where

� Q has orthonormal columns, (m�n)

� R is upper triangular and invertible. (n�n)

How to �nd Q and R?

� Gram�Schmidt orthonormalization on (columns of) A, to get (columns of) Q

� R=QTA

Why? If A=QR, then QTA=QTQR which simpli�es to R=QTA (since QTQ= I).

The decomposition A=QR is unique if we require the diagonal entries of R to be positive (and this is exactly
what happens when applying Gram�Schmidt).
Practical comment. Actually, no extra work is needed for computing R. All of its entries have been computed
during Gram�Schmidt.
Variations. We can also arrange things so that Q is an m � m orthogonal matrix and R a m � n
upper triangular matrix. This is a tiny bit more work (and not required for many applications): we need to
complement �our� Q with additional orthonormal columns and add corresponding zero rows to R. For square
matrices this makes no di�erence.

Example 68. Determine the QR decomposition of A=

2664
0 2 1
3 1 1
0 0 1
0 0 1

3775.
Solution. The �rst step is Gram�Schmidt orthonormalization on the columns of A. We then use the resulting
orthonormal vectors as the columns of Q.

We already did Gram�Schmidt in Example 66: from that work, we have Q=

26664
0 1 0
1 0 0

0 0 1/ 2
p

0 0 1/ 2
p

37775.
Hence, R=QTA=

264 0 1 0 0
1 0 0 0

0 0 1/ 2
p

1/ 2
p

375
2664
0 2 1
3 1 1
0 0 1
0 0 1

3775=
264 3 1 1
0 2 1

0 0 2
p

375.
Comment. As commented earlier, the entries of R have actually all been computed during Gram�Schmidt,
so that, if we pay attention, we could immediately write down R (no extra work required). Looking back at
Example 66, can you see this?

Check. Indeed, QR=

26664
0 1 0
1 0 0

0 0 1/ 2
p

0 0 1/ 2
p

37775
264 3 1 1
0 2 1

0 0 2
p

375=
2664
0 2 1
3 1 1
0 0 1
0 0 1

3775 equals A.

Example 69. (extra) Find the QR decomposition of A=
24 1 1 2
0 0 1
1 0 0

35.

Solution. (�nal answer only) A=QR with Q=
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1
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1

2
p 0

0 0 1
1

2
p ¡ 1

2
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37775 and R=
26664

2
p 1

2
p 2

p

0
1

2
p 2

p

0 0 1

37775.
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Example 70. One practical application of the QR decomposition is solving systems of linear
equations.

Ax= b () QRx= b (now, multiply with QT from the left)

=) Rx=QTb

The last system is triangular and can be solved by back substitution.
A couple of comments are in order:

� If A is n�n and invertible, then the �=)� is actually a �()�.

� The equation Rx=QTb is always consistent! (Recall that R is invertible.)
Indeed, if A is not n�n or not invertible, then Rx=QTb gives the least squares solutions!
Why? ATAx̂=ATb () (QR)TQR

=RTQTQR

x̂=(QR)Tb () RTRx̂=RTQTb () Rx̂=QTb

[For the last step we need that R is invertible, which is always the case when A is m�n of rank n.]

� So, how does the QR way of solving linear systems compare to our beloved Gaussian elimination (LU)?
It turns out that QR is a little slower than LU but makes up for it in �numerical stability�.
What does that mean? When computing numerically, we use �oating point arithmetic and approx-
imate each number by an expression of the form 0.1234 � 10¡16. A certain (�xed) number of bits is
used to store the part 0.1234 (here, 4 decimal places of accuracy) as well as the exponent ¡16.
Now, here is something terrible that can happen in numerical computations: mathematically, the
quantities x and (x + 1) ¡ 1 are exactly the same. However, numerically, they might not. Take,
for instance, 0.1234 � 10¡6. Then, to an accuracy of 4 decimal places, x + 1 = 0.1000 � 101, so that
(x+1)¡ 1= 0.0000. But x=/ 0. We completely lost all the information about x.
To be numerically stable, an algorithm must avoid issues like that.

x̂ is a least squares solution of Ax= b

() Rx̂=QTb (where A=QR)
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