Orthogonality

The inner product and distances

Definition 15. The inner product (or dot product) of v, w in \mathbb{R}^n :

$$\boldsymbol{v} \cdot \boldsymbol{w} = \boldsymbol{v}^T \boldsymbol{w} = v_1 w_1 + \dots + v_n w_n.$$

Because we can think of this as a special case of the matrix product, it satisfies the basic rules like associativity and distributivity.

In addition: $\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v}$.

Example 16.
$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix} = 2 - 2 + 12 = 12$$

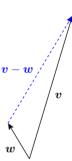
Definition 17.

• The **norm** (or **length**) of a vector \mathbf{v} in \mathbb{R}^n is

$$\|\boldsymbol{v}\| = \sqrt{\boldsymbol{v} \cdot \boldsymbol{v}} = \sqrt{v_1^2 + \dots + v_n^2}.$$

• The **distance** between points ${m v}$ and ${m w}$ in ${\mathbb R}^n$ is

$$\operatorname{dist}(\boldsymbol{v}, \boldsymbol{w}) = \|\boldsymbol{v} - \boldsymbol{w}\|.$$



Example 18. For instance, in
$$\mathbb{R}^2$$
, $\operatorname{dist}\left(\left[\begin{array}{c} x_1 \\ y_1 \end{array}\right], \left[\begin{array}{c} x_2 \\ y_2 \end{array}\right]\right) = \left\|\left[\begin{array}{c} x_1 - x_2 \\ y_1 - y_2 \end{array}\right]\right\| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$.

Example 19. Write $\|\boldsymbol{v} - \boldsymbol{w}\|^2$ as a dot product, and multiply it out.

Solution.
$$\| \boldsymbol{v} - \boldsymbol{w} \|^2 = (\boldsymbol{v} - \boldsymbol{w}) \cdot (\boldsymbol{v} - \boldsymbol{w}) = \boldsymbol{v} \cdot \boldsymbol{v} - \boldsymbol{v} \cdot \boldsymbol{w} - \boldsymbol{w} \cdot \boldsymbol{v} + \boldsymbol{w} \cdot \boldsymbol{w} = \| \boldsymbol{v} \|^2 - 2 \boldsymbol{v} \cdot \boldsymbol{w} + \| \boldsymbol{w} \|^2$$

Comment. This is a vector version of $(x-y)^2 = x^2 - 2xy + y^2$.

The reason we were careful and first wrote $-\boldsymbol{v}\cdot\boldsymbol{w}-\boldsymbol{w}\cdot\boldsymbol{v}$ before simplifying it to $-2\boldsymbol{v}\cdot\boldsymbol{w}$ is that we should not take rules such as $\boldsymbol{v}\cdot\boldsymbol{w}=\boldsymbol{w}\cdot\boldsymbol{v}$ for granted. For instance, for the cross product $\boldsymbol{v}\times\boldsymbol{w}$, that you may have seen in Calculus, we have $\boldsymbol{v}\times\boldsymbol{w}\neq\boldsymbol{w}\times\boldsymbol{v}$ (instead, $\boldsymbol{v}\times\boldsymbol{w}=-\boldsymbol{w}\times\boldsymbol{v}$).

Orthogonal vectors

Definition 20. $oldsymbol{v}$ and $oldsymbol{w}$ in \mathbb{R}^n are **orthogonal** if

$$\boldsymbol{v} \cdot \boldsymbol{w} = 0.$$

Why? How is this related to our understanding of right angles?

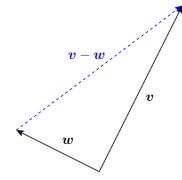
Pythagoras!

 ${m v}$ and ${m w}$ are orthogonal

$$\iff \|\boldsymbol{v}\|^2 + \|\boldsymbol{w}\|^2 = \underbrace{\|\boldsymbol{v} - \boldsymbol{w}\|^2}_{=\|\boldsymbol{v}\|^2 - 2\boldsymbol{v} \cdot \boldsymbol{w} + \|\boldsymbol{w}\|^2}_{\text{(by previous example)}}$$

$$\iff -2\boldsymbol{v} \cdot \boldsymbol{w} = 0$$

$$\iff \boldsymbol{v} \cdot \boldsymbol{w} = 0$$



Example 21. Determine a basis for the **orthogonal complement** of (the span of) $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

What are we looking for? The orthogonal complement of v consists of all vectors that are orthogonal to v. More generally, the orthogonal complement of a space V consists of all vectors that are orthogonal to every vector in V.

Solution. (staring/intution) We are working in 3-dimensional space and already have 1 vector. The vectors orthogonal to it lie in a 3-1=2-dimensional space (a plane).

Two of the vectors orthogonal to $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ are $\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$.

Knowing that the orthogonal complement has dimension 2, we conclude that $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ is a basis.

In other words, the orthogonal complement of span $\left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix} \right\}$ is span $\left\{ \begin{bmatrix} 1\\-1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1 \end{bmatrix} \right\}$.

[Note how the dimensions add up to the dimension of the entire space: 1+2=3.]

Solution. (professional) $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \mathbf{0}$ (dot product!) is the same as $\begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \mathbf{0}$ (matrix product!). Hence, the orthogonal complement of span $\left\{ \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \right\}$ is the same as $\text{null}(\begin{bmatrix} 1 & 2 & 1 \end{bmatrix})$.

Computing a basis for null([1 2 1]) is easy since [1 2 1] is already in RREF.

Note that the general solution to $\begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \boldsymbol{x} = 0$ is $\begin{bmatrix} -2s - t \\ s \\ t \end{bmatrix} = s \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$.

A basis for $\operatorname{null}(\begin{bmatrix} 1 & 2 & 1 \end{bmatrix})$ therefore is $\begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$. (Check that these are indeed orthogonal to $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$!)

Example 22. Determine a basis for the orthogonal complement of span $\left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 3\\1\\2 \end{bmatrix} \right\}$.

Solution. We are looking for vectors \boldsymbol{x} such that $\begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \boldsymbol{0}$ and $\begin{bmatrix} 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \boldsymbol{0}$.

The two equations can be combined into a single one: $\begin{bmatrix} 1 & 2 & 1 \ 3 & 1 & 2 \end{bmatrix} \begin{vmatrix} x_1 \ x_2 \end{vmatrix} = \mathbf{0}$.

In other words, the orthogonal complement of $\operatorname{span}\left\{\left[\begin{array}{c}1\\2\\1\end{array}\right],\left[\begin{array}{c}3\\1\\2\end{array}\right]\right\}$ is the same as $\operatorname{null}\left(\left[\begin{array}{cc}1&2&1\\3&1&2\end{array}\right]\right)$.

It remains to compute a basis for that null space:

$$\begin{bmatrix} 1 & 2 & 1 \\ 3 & 1 & 2 \end{bmatrix} \xrightarrow{R_2 - 3R_1 \Rightarrow R_2} \begin{bmatrix} 1 & 2 & 1 \\ 0 & -5 & -1 \end{bmatrix} \xrightarrow{\text{back-substitution}} \begin{bmatrix} -3/5s \\ -1/5s \\ s \end{bmatrix}$$

Hence, a basis for the orthogonal complement of span $\left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 3\\1\\2 \end{bmatrix} \right\}$ is $\begin{bmatrix} -3/5\\-1/5\\1 \end{bmatrix}$.

Check. $\begin{vmatrix} -3/5 \\ -1/5 \end{vmatrix}$ is indeed orthogonal to both $\begin{vmatrix} 1 \\ 2 \\ 1 \end{vmatrix}$ and $\begin{vmatrix} 3 \\ 1 \\ 2 \end{vmatrix}$.

Just to make sure. Why was it clear that the orthogonal complement is 1-dimensional?