
Sketch of Lecture 14 Fri, 2/10/2017

Example 78. Find the QR decomposition of A=
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Solution. (�nal answer only) A=QR with Q=
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Example 79. One practical application of the QR decomposition is solving systems of linear
equations.

Ax= b () QRx= b (now, multiply with QT from the left)

=) Rx=QTb

The last system is triangular and can be solved by back substitution.
A couple of comments are in order:

� If A is n�n and invertible, then the �=)� is actually a �()�.

� The equation Rx=QTb is always consistent! (Can you see that? Recall that R is upper triangular.)
Indeed, if A is not n�n or not invertible, then Rx=QTb gives the least squares solutions!
Why? ATAx̂=ATb () (QR)TQR

=RTQTQR

x̂=(QR)Tb () RTRx̂=RTQTb () Rx̂=QTb

[For the last step we need that R is invertible, which is always the case when A is m�n of rank n.]

� So, how does the QR way of solving linear systems compare to our beloved Gaussian elimination (LU)?
It turns out that QR is a little slower than LU but makes up for it in �numerical stability�.
What does that mean? When computing numerically, we use �oating point arithmetic and approx-
imate each number by an expression of the form 0.1234 � 10¡16. A certain (�xed) number of bits is
used to store the part 0.1234 (here, 4 decimal places of accuracy) as well as the exponent ¡16.
Now, here is something terrible that can happen in numerical computations: mathematically, the
quantities x and (x+ 1)¡ 1 are exactly the same. However, numerically, they might not. Take, for
instance, 0.1234 � 10¡16. Then, to an accuracy of 4 decimal places, x + 1 = 0.1000 � 101, so that
(x+1)¡ 1= 0.0000. But x=/ 0. We completely lost all the information about x.
To be numerically stable, an algorithm must avoid issues like that.

x̂ is a least squares solution of Ax= b

() Rx̂=QTb (where A=QR)

Example 80. (homework) Suppose Q has orthonormal columns. What is the projection
matrix for orthogonally projecting onto col(Q)?
Solution. Recall that, to project onto Col(A), the projection matrix is P =A(ATA)¡1AT .
Since QTQ= I, to project onto Col(Q), the projection matrix is P =QQT .
Comment. A familiar special case is when we project onto a unit vector q: in that case, the projection of b
onto q is (q � b)q= q(qTb) = (qqT)b, so the projection matrix here is qqT .

Example 81. (homework) Again, if P is a projection matrix, then what is P 2?
Solution. We already observed in Example 67 that P 2=P .
If P is the projection onto W , we now know that we can always select an orthonormal basis for W . Using
these basis vectors as the columns of the matrix Q, we get P =QQT .
Since QTQ= I, we �nd that P 2=(QQT)(QQT )=Q(QTQ)

I

QT =QQT =P .
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