Preparing for Midterm #2

[Real computations only necessary for the last two.]

Please print your name:

Computational part

Problem 1. Evaluate the following determinants.

(a)	$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	$egin{array}{c} 1 \\ 2 \\ 3 \end{array}$	$4 \\ 5 \\ 6$			
(b)	$\begin{array}{c}1\\0\\0\end{array}$	$egin{array}{c} 1 \\ 2 \\ 0 \end{array}$	$4 \\ 5 \\ 6$			
(c)	$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{array}$	$ \begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	$ \begin{array}{c} 0 \\ 1 \\ 0 \\ $	$ \begin{array}{c} 1 \\ 0 \\ $

(d)	$\begin{array}{c}1\\2\\-1\\0\end{array}$	$2 \\ 3 \\ -2 \\ 2$	$-2 \\ -4 \\ 0 \\ 5$	0 0 0 0	
(e)	$\begin{array}{ccc}1&2\\1&1\\3&2\end{array}$	$\left. \begin{array}{c} 3 \\ 3 \\ 1 \end{array} \right $			
(f)	$\begin{array}{c}1\\2\\-1\\0\end{array}$	$2 \\ 3 \\ -2 \\ 2$	$-2 \\ -4 \\ 0 \\ 5$	$\begin{array}{c c}0\\1\\2\\3\end{array}$	

Problem 2. Find a basis for col(A), row(A), null(A) with

(a)
$$A = \begin{bmatrix} 1 & 2 & 1 & 1 & 5 \\ -1 & -2 & -1 & -1 & -3 \\ 2 & 4 & 0 & -6 & 7 \end{bmatrix}$$

(b) $A = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$
(c) $A = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$

Problem 3.

(a) Is
$$W = \left\{ \begin{bmatrix} a \\ b \\ c \\ d \\ e \end{bmatrix} : a - b = c, a - d = e \right\}$$
 a vector space? If yes, find a basis.
(b) Is $W = \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\}$ a vector space? If yes, find a basis.
(c) Is $W = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right\}$ a vector space? If yes, find a basis.
(d) Is $W = \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right\}$ a vector space? If yes, find a basis.

Armin Straub straub@southalabama.edu **Problem 4.** Consider $H = \operatorname{span}\left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 2\\2\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\1 \end{bmatrix} \right\}.$

- (a) Give a basis for H. What is the dimension of H?
- (b) Determine whether the vector $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$ is in *H*. What about the vector $\begin{bmatrix} 1\\3\\2 \end{bmatrix}$?
- (c) Extend the basis of H to a basis of \mathbb{R}^3 .

Problem 5. Is it true that span
$$\left\{ \begin{bmatrix} 1\\ -1\\ 1\\ 0 \end{bmatrix}, \begin{bmatrix} 0\\ -2\\ 0\\ 1 \end{bmatrix} \right\} = \operatorname{span} \left\{ \begin{bmatrix} 1\\ 1\\ 1\\ -1 \end{bmatrix}, \begin{bmatrix} 2\\ 0\\ 2\\ -1 \end{bmatrix} \right\}$$
?

Short answer part

Problem 6. Let A be a 5×4 matrix. Suppose that the linear system Ax = b has the solution set

$$\left\{ \left[\begin{array}{c} 1-c+d\\c\\ 3-2d\\d \end{array} \right]: \ c,d \ {\rm in} \ \mathbb{R} \right\}.$$

- (a) Give a basis for the null space of A.
- (b) What is the rank of A?

Problem 7. In each case, write down a precise definition or answer.

- (a) What is a vector space?
- (b) What is the rank of a matrix?
- (c) What does it mean for vectors $v_1, v_2, ..., v_m$ from a vector space to be linearly independent?
- (d) List the elementary row operations.
- (e) What does it mean for vectors $v_1, v_2, ..., v_m$ to be a basis for a vector space V?

Problem 8. Let A be a $n \times n$ matrix. List at least five other statements which are equivalent to the statement "A is invertible".

Problem 9.

- (a) Suppose V and W are subspaces of \mathbb{R}^n , and that v_1, v_2 is a basis for V, and w_1, w_2, w_3 is a basis for W. What can you say about dim U with $U = \text{span}\{v_1, v_2, w_1, w_2, w_3\}$?
- (b) Let A be a 4×3 matrix, whose row space has dimension 2. What is the dimension of null(A)?
- (c) Let A be a 3×3 matrix, whose column space has dimension 3. If **b** is a vector in \mathbb{R}^3 , what can you say about the number of solutions to the equation $A\mathbf{x} = \mathbf{b}$?
- (d) Let A be a 3×3 matrix, whose column space has dimension 2. What can you say about det (A)?

Problem 10. True or false?

- (a) Every vector space has a basis.
- (b) The zero vector can never be a basis vector.
- (c) Every set of linearly independent vectors in V can be extended to a basis of V.
- (d) col(A) and row(A) always have the same dimension.
- (e) If B is the RREF of A, then we always have col(A) = col(B).
- (f) If B is the RREF of A, then we always have row(A) = row(B).
- (g) If a subspace V of \mathbb{R}^3 contains three linearly independent vectors, then always $V = \mathbb{R}^3$.
- (h) There are matrices A such that null(A) is the empty set.