Please print your name:

Computational part

Problem 1. Evaluate the following determinants.

[Real computations only necessary for the last two.]

(a)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(d)	$\begin{vmatrix} 1 & 2 & -2 & 0 \\ 2 & 3 & -4 & 0 \\ -1 & -2 & 0 & 0 \\ 0 & 2 & 5 & 0 \end{vmatrix}$
(b)	$ \begin{vmatrix} 1 & 1 & 4 \\ 0 & 2 & 5 \\ 0 & 0 & 6 \end{vmatrix} $	(e)	$ \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 3 \\ 3 & 2 & 1 \end{bmatrix} $
(c)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(f)	$\begin{vmatrix} 1 & 2 & -2 & 0 \\ 2 & 3 & -4 & 1 \\ -1 & -2 & 0 & 2 \\ 0 & 2 & 5 & 3 \end{vmatrix}$

Solution.

- (a) $\begin{vmatrix} 1 & 1 & 4 \\ 2 & 2 & 5 \\ 3 & 3 & 6 \end{vmatrix} = 0$ because the columns are not linearly independent. (Column one and two are the same.)
- (b) $\begin{vmatrix} 1 & 1 & 4 \\ 0 & 2 & 5 \\ 0 & 0 & 6 \end{vmatrix} = 1 \cdot 2 \cdot 6 = 12$

 $0 \ 1$

(c) $\begin{vmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{vmatrix} = (-1)(-1)(-1) = -1 \text{ because it takes three row interchanges } (R_1 \Leftrightarrow R_6, R_2 \Leftrightarrow R_5, R_3 \Leftrightarrow R_4)$

to transform this matrix to the 6×6 identity matrix.

(d) $\begin{vmatrix} 1 & 2 & -2 & 0 \\ 2 & 3 & -4 & 0 \\ -1 & -2 & 0 & 0 \\ 0 & 2 & 5 & 0 \end{vmatrix} = 0$ because the matrix is clearly not invertible. (Look at the last column!)

(e)
$$\begin{vmatrix} 1 & 2 & 3 \\ 1 & 1 & 3 \\ 3 & 2 & 1 \end{vmatrix} \stackrel{R_2 - R_1 \Rightarrow R_2}{=} \begin{vmatrix} 1 & 2 & 3 \\ 0 & -1 & 0 \\ 0 & -4 & -8 \end{vmatrix} \stackrel{R_3 - 4R_2 \Rightarrow R_3}{=} \begin{vmatrix} 1 & 2 & 3 \\ 0 & -1 & 0 \\ 0 & 0 & -8 \end{vmatrix} = 1 \cdot (-1) \cdot (-8) = 8$$

Armin Straub straub@southalabama.edu

$$(f) \begin{vmatrix} 1 & 2 & -2 & 0 \\ 2 & 3 & -4 & 1 \\ -1 & -2 & 0 & 2 \\ 0 & 2 & 5 & 3 \end{vmatrix} \begin{vmatrix} R_2 - 2R_1 \Rightarrow R_2 \\ R_3 + R_1 \Rightarrow R_3 \\ = \end{vmatrix} \begin{vmatrix} 1 & 2 & -2 & 0 \\ 0 & -1 & 0 & 1 \\ = \end{vmatrix} \begin{vmatrix} 1 & 2 & -2 & 0 \\ 0 & -1 & 0 & 1 \\ = \end{vmatrix} \begin{vmatrix} 1 & 2 & -2 & 0 \\ 0 & -1 & 0 & 1 \\ = \end{vmatrix} \begin{vmatrix} 1 & 2 & -2 & 0 \\ 0 & -1 & 0 & 1 \\ = \end{vmatrix} \begin{vmatrix} 1 & 2 & -2 & 0 \\ 0 & -1 & 0 & 1 \\ = \end{vmatrix} \begin{vmatrix} 1 & 2 & -2 & 0 \\ 0 & -1 & 0 & 1 \\ = \end{vmatrix} \begin{vmatrix} 1 & 2 & -2 & 0 \\ 0 & -1 & 0 & 1 \\ = \end{vmatrix} \begin{vmatrix} 1 & 2 & -2 & 0 \\ 0 & -1 & 0 & 1 \\ = 0 & 0 & -2 & 2 \\ 0 & 0 & 5 & 5 \end{vmatrix} \begin{vmatrix} 1 & 2 & -2 & 0 \\ 0 & -1 & 0 & 1 \\ = 0 & 0 & -2 & 2 \\ 0 & 0 & 0 & 10 \end{vmatrix} = 1 \cdot (-1) \cdot (-2) \cdot 10 = 20$$

Problem 2. Find a basis for col(A), row(A), null(A) with

(a) $A = \begin{bmatrix} 1 & 2 & 1 & 1 & 5 \\ -1 & -2 & -1 & -1 & -3 \\ 2 & 4 & 0 & -6 & 7 \end{bmatrix}$ (b) $A = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ (c) $A = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$

Solution.

(a) Our first step is to bring A into RREF (just an echelon form would be enough, but then we would need to back-substitute when solving Ax = 0 for null(A)):

$$\left[\begin{array}{rrrrr} 1 & 2 & 1 & 1 & 5 \\ -1 & -2 & -1 & -1 & -3 \\ 2 & 4 & 0 & -6 & 7 \end{array}\right]_{\substack{\text{RREF} \\ \overrightarrow{\text{ob}} \ \overrightarrow{\text{it}!}}} \left[\begin{array}{rrrr} 1 & 2 & 0 & -3 & 0 \\ 0 & 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{array}\right]$$

• A basis for
$$\operatorname{col}(A)$$
 is: $\begin{bmatrix} 1\\ -1\\ 2 \end{bmatrix}, \begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix}, \begin{bmatrix} 5\\ -3\\ 7 \end{bmatrix}$. $(\dim \operatorname{col}(A) = 3)$

• A basis for row(A) is:
$$\begin{bmatrix} 1\\ 2\\ 0\\ -3\\ 0 \end{bmatrix}$$
, $\begin{bmatrix} 0\\ 0\\ 1\\ 4\\ 0 \end{bmatrix}$, $\begin{bmatrix} 0\\ 0\\ 0\\ 0\\ 1\\ 4 \\ 0 \end{bmatrix}$. (dim row(A) = 3)

• $x_2 = s_1$ and $x_4 = s_2$ are our free variables. The general solution to Ax = 0 is:

$$\boldsymbol{x} = \begin{bmatrix} -2s_1 + 3s_2 \\ s_1 \\ -4s_2 \\ s_2 \\ 0 \end{bmatrix} = s_1 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + s_2 \begin{bmatrix} 3 \\ 0 \\ -4 \\ 1 \\ 0 \end{bmatrix}$$

Hence,
$$\begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \\ -4 \\ 1 \\ 0 \end{bmatrix}$$
 is a basis for null(A). (dim null(A) = 2)
(b) A basis for col(A) is:
$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}.$$

A basis for row(A) is: [1].

null(A) = {[0]} (only the trivial solution), which has dimension 0 and therefore a basis with 0 vectors (that is, a/the basis is the empty set \emptyset).

- (c) A basis for col(A) is: [1].
 - A basis for row(A) is: $\begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$.

The general solution to $A\mathbf{x} = \mathbf{0}$ is (note that A is in RREF already) $\mathbf{x} = \begin{bmatrix} -2s_1 - 3s_2 \\ s_1 \\ s_2 \end{bmatrix} = s_1 \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} + s_2 \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}$. Hence, a basis for null(A) is: $\begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}$.

Problem 3.

(a) Is
$$W = \left\{ \begin{bmatrix} a \\ b \\ c \\ d \\ e \end{bmatrix} : a - b = c, a - d = e \right\}$$
 a vector space? If yes, find a basis.

- (b) Is $W = \left\{ \begin{bmatrix} 0\\0\\0 \end{bmatrix} \right\}$ a vector space? If yes, find a basis.
- (c) Is $W = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}$ a vector space? If yes, find a basis.
- (d) Is $W = \left\{ \begin{bmatrix} 0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}$ a vector space? If yes, find a basis.

Solution.

- (a) The matrix form of the linear equations a b = c, a d = e is $\begin{bmatrix} 1 & -1 & -1 & 0 & 0 \\ 1 & 0 & 0 & -1 & -1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \\ e \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. This means that $W = \operatorname{null}\left(\begin{bmatrix} 1 & -1 & -1 & 0 & 0 \\ 1 & 0 & 0 & -1 & -1 \end{bmatrix}\right)$. $\begin{bmatrix} 1 & -1 & -1 & 0 & 0 \\ 1 & 0 & 0 & -1 & -1 \end{bmatrix} \stackrel{R_2 - R_1 \Rightarrow R_2}{\longrightarrow} \begin{bmatrix} 1 & -1 & -1 & 0 & 0 \\ 0 & 1 & 1 & -1 & -1 \end{bmatrix} \stackrel{R_1 + R_2 \Rightarrow R_1}{\longrightarrow} \begin{bmatrix} 1 & 0 & 0 & -1 & -1 \\ 0 & 1 & 1 & -1 & -1 \end{bmatrix}$ The general solution of our system is $\begin{bmatrix} a \\ b \\ c \\ d \\ e \end{bmatrix} = \begin{bmatrix} s_2 + s_3 \\ s_1 \\ s_2 \\ s_3 \end{bmatrix} = s_1 \begin{bmatrix} 0 \\ -1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + s_2 \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + s_3 \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}$.
- (b) Yes, W is a vector space. It has dimension 0 and therefore a basis with 0 vectors (that is, a/the basis is the empty set \emptyset).
- (c) No, W is not a vector space, because $\begin{bmatrix} 0\\0\\0 \end{bmatrix} \notin W$. (d) No, W is not a vector space. For instance, it contains $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$ but not $-1 \cdot \begin{bmatrix} 1\\0\\0 \end{bmatrix}$.

Problem 4. Consider $H = \operatorname{span}\left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 2\\2\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\1 \end{bmatrix} \right\}.$

- (a) Give a basis for H. What is the dimension of H?
- (b) Determine whether the vector $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$ is in *H*. What about the vector $\begin{bmatrix} 1\\3\\2 \end{bmatrix}$?
- (c) Extend the basis of H to a basis of \mathbb{R}^3 .

Solution.

(a) Clearly, $H = \operatorname{span}\left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\1 \end{bmatrix} \right\}.$

Moreover, $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$, $\begin{bmatrix} 1\\2\\1 \end{bmatrix}$ are a basis for H (because these two vectors are linearly independent). In particular, dim H = 2.

(b) We need to solve $\begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 0 & 1 \end{bmatrix} \boldsymbol{x} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 0 & 1 \end{bmatrix} \boldsymbol{x} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$.

Let us do both at the same time (by working with two right-hand sides at once):

 $\begin{bmatrix} 1 & 1 & | & 1 & 1 \\ 1 & 2 & | & 0 & 3 \\ 0 & 1 & | & 0 & 2 \end{bmatrix} R_2 - R_1 \Rightarrow R_2 \begin{bmatrix} 1 & 1 & | & 1 & 1 \\ 0 & 1 & | & -1 & 2 \\ 0 & 1 & | & 0 & 2 \end{bmatrix} R_3 - R_2 \Rightarrow R_3 \begin{bmatrix} 1 & 1 & | & 1 & 1 \\ 0 & 1 & | & -1 & 2 \\ 0 & 0 & | & 1 & 0 \end{bmatrix}$

The first equation is inconsistent and so $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$ is not in H.

The first equation is consistent and so $\begin{bmatrix} 1\\ 3\\ 2 \end{bmatrix}$ is in H.

(c) We need to add a third vector to our basis $\begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\1 \end{bmatrix}$ of H. In the previous part, we found that $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$ is not in H. In other words, $\begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$ are linearly independent. It follows that $\begin{bmatrix} 1\\1\\0\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$ are a basis for \mathbb{R}^3 .

Problem 5. Is it true that span $\left\{ \begin{bmatrix} 1\\-1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\-2\\0\\1 \end{bmatrix} \right\} = \operatorname{span} \left\{ \begin{bmatrix} 1\\1\\1\\-1 \end{bmatrix}, \begin{bmatrix} 2\\0\\2\\-1 \end{bmatrix} \right\}$?

Solution. Let
$$V = \operatorname{span}\left\{ \begin{bmatrix} 1\\ -1\\ 1\\ 0 \end{bmatrix}, \begin{bmatrix} 0\\ -2\\ 0\\ 1 \end{bmatrix} \right\}$$
 and $W = \operatorname{span}\left\{ \begin{bmatrix} 1\\ 1\\ 1\\ -1 \end{bmatrix}, \begin{bmatrix} 2\\ 0\\ 2\\ -1 \end{bmatrix} \right\}$.
We check that $\begin{bmatrix} 1\\ 1\\ 1\\ -1 \end{bmatrix} \in V$ and $\begin{bmatrix} 2\\ 0\\ 2\\ -1 \end{bmatrix} \in V$.

Armin Straub straub@southalabama.edu $\text{(This follows, as in the previous problem, from} \begin{bmatrix} 1 & 0 & | & 1 & 2 \\ -1 & -2 & | & 1 & 0 \\ 1 & 0 & | & 1 & 2 \\ 0 & 1 & | & -1 & -1 \end{bmatrix} \overset{R_2 + R_1 \Rightarrow R_2}{\underset{\longrightarrow}{} \longrightarrow } \begin{bmatrix} 1 & 0 & | & 1 & 2 \\ 0 & -2 & | & 2 & 2 \\ 0 & 0 & | & -1 & -1 \end{bmatrix} \overset{R_4 + \frac{1}{2}R_2 \Rightarrow R_4}{\underset{\longrightarrow}{} \longrightarrow } \begin{bmatrix} 1 & 0 & | & 1 & 2 \\ 0 & -2 & | & 2 & 2 \\ 0 & 0 & | & -1 & -1 \end{bmatrix} ^{R_4 + \frac{1}{2}R_2 \Rightarrow R_4} \begin{bmatrix} 1 & 0 & | & 1 & 2 \\ 0 & -2 & | & 2 & 2 \\ 0 & 0 & | & 0 & 0 \end{bmatrix} ,$

because for both right-hand sides the system is consistent.)

Since these two vectors span W, this implies that W is a subspace of V.

But both spaces have dimension 2, and so they must be equal: V = W.

Short answer part

Problem 6. Let A be a 5×4 matrix. Suppose that the linear system Ax = b has the solution set

$$\left\{ \begin{bmatrix} 1-c+d\\c\\3-2d\\d \end{bmatrix} : c,d \text{ in } \mathbb{R} \right\}.$$

- (a) Give a basis for the null space of A.
- (b) What is the rank of A?

Solution.

(

(a) Observe that
$$\begin{bmatrix} 1-c+d\\c\\3-2d\\d \end{bmatrix} = \begin{bmatrix} 1\\0\\3\\0 \end{bmatrix} + c\begin{bmatrix} -1\\1\\0\\0 \end{bmatrix} + d\begin{bmatrix} 1\\0\\-2\\1 \end{bmatrix}$$
.
Here, $\begin{bmatrix} 1\\0\\3\\0 \end{bmatrix}$ is a particular solution to $A\boldsymbol{x} = \boldsymbol{b}$ and $c\begin{bmatrix} -1\\1\\0\\0 \end{bmatrix} + d\begin{bmatrix} 1\\0\\-2\\1 \end{bmatrix}$ is the general solution to $A\boldsymbol{x} = \boldsymbol{0}$.
In particular, $\begin{bmatrix} -1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\-2\\1 \end{bmatrix}$ are a basis for null(A).

(b) $\operatorname{rank}(A) = 4 - 2 = 2$ because A has 4 columns and we know that 2 of them correspond to free variables.

Problem 7. In each case, write down a precise definition or answer.

- (a) What is a vector space?
- (b) What is the rank of a matrix?
- (c) What does it mean for vectors $v_1, v_2, ..., v_m$ from a vector space to be linearly independent?
- (d) List the elementary row operations.
- (e) What does it mean for vectors $v_1, v_2, ..., v_m$ to be a basis for a vector space V?

Solution.

(a) A vector space is a set V of vectors that can be written as a span (that is, $V = \text{span}\{w_1, w_2, ...\}$ for a bunch of vectors $w_1, w_2, ...$).

An alternative, more abstract, definition is: A vector space is a set V of vectors such that

- if $v, w \in V$, then $v + w \in V$, [closed under addition]
- if $v \in V$ and $r \in \mathbb{R}$, then $rv \in V$. [closed under scalar multiplication]
- (b) The rank of a matrix is the number of pivots in an echelon form.

Alternatively: The rank of a matrix is the dimension of its column space. (Or, row space.)

(c) Vectors $v_1, v_2, ..., v_n$ are linearly independent if the only solution to

$$x_1 \boldsymbol{v}_1 + x_2 \boldsymbol{v}_2 + \ldots + x_n \boldsymbol{v}_n = \boldsymbol{0}$$

is the trivial one $(x_1 = x_2 = \dots = x_n = 0)$.

- (d) The elementary row operations are:
 - (replacement) $R_j \lambda R_i \Rightarrow R_j$
 - (swap two rows) $R_j \Leftrightarrow R_i$
 - (scaling) $\lambda R_i \Rightarrow R_i$
- (e) The vectors $v_1, v_2, ..., v_m$ are a basis for V, if $v_1, v_2, ..., v_m$ are linearly independent and $V = \text{span}\{v_1, v_2, ..., v_m\}$.

Problem 8. Let A be a $n \times n$ matrix. List at least five other statements which are equivalent to the statement "A is invertible".

Solution. Here are a few possibilities:

- A is invertible.
- \iff The RREF of A is I_n .
- \iff A has n pivots.
- $\iff \operatorname{rank}(A) = 0$
- \iff For every $\boldsymbol{b} \in \mathbb{R}^n$, the system $A\boldsymbol{x} = \boldsymbol{b}$ has a unique solution.
- \iff The system $A\mathbf{x} = \mathbf{0}$ has a unique solution.
- $\iff \dim \operatorname{null}(A) = 0$
- \iff The columns of A are linearly independent.
- \iff The rows of A are linearly independent.
- \iff For every $\boldsymbol{b} \in \mathbb{R}^n$, the system $A\boldsymbol{x} = \boldsymbol{b}$ has a solution.
- \iff The columns of A span all of \mathbb{R}^n .
- $\iff \dim \operatorname{col}(A) = n$
- \iff The rows of A span all of \mathbb{R}^n .
- $\iff \dim \operatorname{row}(A) = n$
- $\iff \det(A) \neq 0$

6

Problem 9.

- (a) Suppose V and W are subspaces of \mathbb{R}^n , and that v_1, v_2 is a basis for V, and w_1, w_2, w_3 is a basis for W. What can you say about dim U with $U = \operatorname{span}\{v_1, v_2, w_1, w_2, w_3\}$?
- (b) Let A be a 4×3 matrix, whose row space has dimension 2. What is the dimension of null(A)?
- (c) Let A be a 3×3 matrix, whose column space has dimension 3. If **b** is a vector in \mathbb{R}^3 , what can you say about the number of solutions to the equation $A\mathbf{x} = \mathbf{b}$?
- (d) Let A be a 3×3 matrix, whose column space has dimension 2. What can you say about det (A)?

Solution.

- (a) dim $U \in \{3, 4, 5\}$
- (b) $\dim \operatorname{null}(A) = 3 2 = 1$
- (c) If A is a 3×3 matrix, whose column space has dimension 3, then A is invertible. Therefore, the equation Ax = b has a unique solution for any b.
- (d) If A is a 3×3 matrix, whose column space has dimension 2, then A is not invertible. Therefore, det (A) = 0.

Problem 10. True or false?

- (a) Every vector space has a basis.
- (b) The zero vector can never be a basis vector.
- (c) Every set of linearly independent vectors in V can be extended to a basis of V.
- (d) col(A) and row(A) always have the same dimension.
- (e) If B is the RREF of A, then we always have col(A) = col(B).
- (f) If B is the RREF of A, then we always have row(A) = row(B).
- (g) If a subspace V of \mathbb{R}^3 contains three linearly independent vectors, then always $V = \mathbb{R}^3$.
- (h) There are matrices A such that null(A) is the empty set.

Solution.

- (a) True. In fact, for all the spaces we can get our hands on, we know how to compute a basis. [In the case of very infinite-dimensional spaces, this becomes "the axiom of choice".]
- (b) True. A set of vector that includes the zero vector can never be linearly independent.
- (c) True. We just keep adding missing vectors from V to the initial set of linearly independent vectors until we span all of V. (If V has dimension d, then this process of adding vectors has to stop once we have a total of d vectors.)
- (d) True.
- (e) False. Elementary row operations do not preserve column spaces (except by accident).

For instance, $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \xrightarrow{R_1 \Leftrightarrow R_2} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ but $\operatorname{col}\left(\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}\right) \neq \operatorname{col}\left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\right)$.

- (f) True. Elementary row operations do preserve the row space.
- (g) True. Three linearly independent vectors in \mathbb{R}^3 automatically form a basis of \mathbb{R}^3 .
- (h) False. null(A) always contains at least the zero vector (the trivial solution to Ax = 0).