Preparing for Midterm #1

Please print your name:

Problem 1. Compute the following, or state why it is not possible to do so:

(a) $\begin{bmatrix} 1 & 2 \\ 1 & 1 \\ 3 & 4 \end{bmatrix}^T$	(d) $\begin{bmatrix} 4 & 2 \\ 2 & 1 \end{bmatrix}^{-1}$
(b) $\begin{bmatrix} 1 & 2 \\ 1 & 1 \\ 3 & 4 \end{bmatrix}^{-1}$	(e) $\begin{bmatrix} 1 & 2 \\ 1 & 1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 3 & 1 & 0 \\ 1 & -1 & 2 \end{bmatrix}$
(c) $\begin{bmatrix} 4 & 2 \\ 1 & 1 \end{bmatrix}^{-1}$	$(f) \left[\begin{array}{rrr} 3 & 1 & 0 \\ 1 & -1 & 2 \end{array} \right] \left[\begin{array}{rrr} 1 & 2 \\ 1 & 1 \end{array} \right]$

Problem 2. Let A be a $p \times q$ matrix and B be an $r \times s$ matrix. Under which condition is $A^T B$ defined?

Problem 3. Decide whether the following statements are true or false.

- (a) If A is invertible then the system $A\mathbf{x} = \mathbf{b}$ always has the same number of solutions.
- (b) The homogeneous system Ax = 0 is always consistent.
- (c) In order for A to be invertible, the matrix A has to be square (that is, of shape $n \times n$).
- (d) If A is a 4×3 matrix with 2 pivot columns, then the columns of A are linearly independent.
- (e) If A is invertible then the columns of A are linearly independent.
- (f) **b** is in the span of the columns of A if and only if the system $A\mathbf{x} = \mathbf{b}$ is consistent.
- (g) Every matrix can be reduced to echelon form by a sequence of elementary row operations.
- (h) The row-reduced echelon form of a matrix is unique.

Problem 4. We are solving a linear system with 4 equations and 5 unknowns. Which of the following are possible?

- (a) The system has no solution.
- (b) The system has a unique solution.
- (c) The system has infinitely many solutions.

Problem 5. We are solving a linear system with 5 equations and 5 unknowns. Which of the following are possible?

- (a) The system has no solution.
- (b) The system has a unique solution.
- (c) The system has infinitely many solutions.

Problem 6. For which values of a is the matrix $\begin{bmatrix} 3 & a-6 \\ 3a & -a+6 \end{bmatrix}$ invertible?

Problem 7. Consider the vectors

w =	$\left[\begin{array}{c}2\\-4\\-1\\1\end{array}\right],$	$\boldsymbol{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix},$	$\boldsymbol{v}_2 = \begin{bmatrix} 0\\ 2\\ 1\\ 0 \end{bmatrix},$	$\boldsymbol{v}_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}.$
-----	---	--	---	--

- (a) Is w in span $\{v_1, v_2, v_3\}$? If so, write w as a linear combination of v_1, v_2, v_3 .
- (b) Determine whether the vectors v_1, v_2, v_3 are linearly independent.
- (c) Is \boldsymbol{v}_3 in span $\{\boldsymbol{v}_1, \boldsymbol{v}_2\}$?

Problem 8. Consider the vectors

	1			0	1		1	
$\boldsymbol{v}_1 =$	0	,	$v_2 =$	-1	,	$v_3 =$	0	
	1 _			3			h	

- (a) For which value(s) of h is v_3 a linear combination of v_1 and v_2 ?
- (b) For which value(s) of h are v_1, v_2, v_3 linearly independent?

Problem 9. Consider
$$A = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
.

(a) Determine A^{-1} .

(b) Using (a), solve
$$A\boldsymbol{x} = \begin{bmatrix} 1\\ 1\\ 0 \end{bmatrix}$$
.

Problem 10. Consider $B = \begin{bmatrix} 1 & 2 & 6 & 5 & -5 & 0 \\ 2 & 4 & 14 & 12 & -12 & -2 \\ 1 & 2 & 4 & 3 & -2 & 6 \end{bmatrix}$.

- (a) Determine the row-reduced echelon form of B.
- (b) Use your result in (a) to find the general solution of the linear system:

- (c) What is the general solution to the associated homogeneous linear system?
- (d) Write down, in vector form, the general solution to $\begin{bmatrix} 1 & 2 & 6 & 5 & -5 \\ 2 & 4 & 14 & 12 & -12 \\ 1 & 2 & 4 & 3 & -2 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 0 \\ -2 \\ 6 \end{bmatrix}$. Also decompose the solution into a particular solution and the solutions to the homogeneous surface.

solution into a particular solution and the solutions to the homogeneous system.

- (e) What is the general solution to $\begin{bmatrix} 1 & 2 & 6 & 5 & -5 \\ 2 & 4 & 14 & 12 & -12 \\ 1 & 2 & 4 & 3 & -2 \end{bmatrix} \boldsymbol{x} = \begin{bmatrix} 2 \\ 4 \\ 2 \end{bmatrix}$? (Note that the RHS is also a column of the matrix!)
- (f) Are the columns of $\begin{bmatrix} 1 & 2 & 6 & 5 & -5 \\ 2 & 4 & 14 & 12 & -12 \\ 1 & 2 & 4 & 3 & -2 \end{bmatrix}$ linearly independent? If not, write down a non-trivial linear combination of the columns, which produces **0**.