Sketch of Lecture 25

Review 154.

- **Eigenvector** equation: $A \boldsymbol{x} = \lambda \boldsymbol{x} \iff (A \lambda I) \boldsymbol{x} = \boldsymbol{0}$ $\lambda \text{ is an eigenvalue of } A \iff \underbrace{\det (A - \lambda I)}_{\text{characteristic polynomial}} = 0.$
- An $n \times n$ matrix A has up to n different eigenvalues λ .
 - The eigenspace of λ is $\operatorname{null}(A \lambda I)$. That is, all eigenvectors of A with eigenvalue λ . Since $A - \lambda I$ has determinant 0, $\operatorname{null}(A - \lambda I)$ always has dimension at least 1.
 - If λ has **multiplicity** m (see examples below), then A has up to m eigenvectors for λ . At least one eigenvector is guaranteed (because $det (A - \lambda I) = 0$).

Example 155. Find the eigenvalues of $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ as well as bases for the corresponding eigenspaces.

Solution. The characteristic polynomial is $\begin{vmatrix} 2-\lambda & 1\\ 1 & 2-\lambda \end{vmatrix} = (2-\lambda)^2 - 1.$

The roots of this polynomial, that is, the eigenvalues are $\lambda = 1$ and $\lambda = 3$.

- For $\lambda = 1$, the eigenspace is null $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, which has basis $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$.
- For $\lambda = 3$, the eigenspace is null $\begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$, which has basis $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

Example 156. Find the eigenvalues of $A = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix}$ as well as bases for the corresponding

eigenspaces.

Solution. By expanding by the first row, we find that the characteristic polynomial is

$$\begin{vmatrix} 2-\lambda & 0 & 0\\ -1 & 3-\lambda & 1\\ -1 & 1 & 3-\lambda \end{vmatrix} = (2-\lambda) \begin{vmatrix} 3-\lambda & 1\\ 1 & 3-\lambda \end{vmatrix} = (2-\lambda)[(3-\lambda)^2 - 1] = (2-\lambda)(\lambda - 2)(\lambda - 4).$$

Since $\lambda = 2$ is a double root, it has (algebraic) multiplicity 2. Hence, the eigenvalues are $\lambda = 2$ (with multiplicity 2) and $\lambda = 4$.

• For $\lambda = 4$, the eigenspace is null $\begin{pmatrix} -2 & 0 & 0 \\ -1 & -1 & 1 \\ -1 & 1 & -1 \end{pmatrix}$, which has basis $\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$. • For $\lambda = 2$, the eigenspace is null $\begin{pmatrix} 0 & 0 & 0 \\ -1 & 1 & 1 \\ -1 & 1 & 1 \end{pmatrix}$, which has basis $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$.

Example 157. Determine the eigenvalues as well as corresponding eigenspaces.

- $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$: char poly $(1 \lambda)^2$; eigenvalue $\lambda = 1$ (with multiplicity 2) and eigenspace \mathbb{R}^2 $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$: char poly $(1 \lambda)^2$; eigenvalue $\lambda = 1$ (with multiplicity 2) and eigenspace span $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$

This illustrates that an eigenspace can have dimension less than the multiplicity of the eigenvalue.

 $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$: char poly λ^2 ; eigenvalue $\lambda = 0$ (with multiplicity 2) and eigenspace span $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$