Sketch of Lecture 24

Example 145.

The matrix $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$

... gives the map $\begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} -y \\ x \end{bmatrix}$, i.e.

... rotates every vector in \mathbb{R}^2 counter-clockwise by 90° .

Example 146.

The matrix $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$

- ... gives the map $\begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} x \\ 0 \end{bmatrix}$, i.e.
- ... projects every vector in \mathbb{R}^2 through onto the *x*-axis.

Eigenvectors and eigenvalues

Throughout, A will be an $n \times n$ matrix.

Definition 147. If $Ax = \lambda x$ (and $x \neq 0$), then x is an **eigenvector** of A with **eigenvalue** λ (just a number).

Example 148. Verify that $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$ is an eigenvector of $A = \begin{bmatrix} 0 & -2 \\ -4 & 2 \end{bmatrix}$. Solution. $Ax = \begin{bmatrix} 0 & -2 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 4 \\ -8 \end{bmatrix} = 4x$ Hence, x is an eigenvector of A with eigenvalue 4.

Example 149. Use your geometric understanding to find the eigenvectors and eigenvalues of $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$.

Solution. $A\begin{bmatrix} x\\ y\end{bmatrix} = \begin{bmatrix} x\\ 0\end{bmatrix}$

i.e. multiplication with A is projection onto the x-axis.

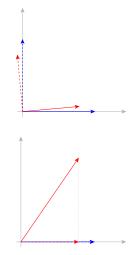
- $A\begin{bmatrix} 1\\0 \end{bmatrix} = 1 \cdot \begin{bmatrix} 1\\0 \end{bmatrix} \rightsquigarrow x = \begin{bmatrix} 1\\0 \end{bmatrix}$ is an eigenvector with eigenvalue $\lambda = 1$.
- $A\begin{bmatrix} 0\\1\end{bmatrix} = \begin{bmatrix} 0\\0\end{bmatrix} = 0 \cdot \begin{bmatrix} 0\\1\end{bmatrix} \rightsquigarrow x = \begin{bmatrix} 0\\1\end{bmatrix}$ is an eigenvector with eigenvalue $\lambda = 0$.

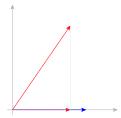
Example 150. Use your geometric understanding to find the eigenvectors and eigenvalues of $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

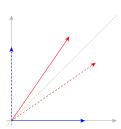
Solution. $A\begin{bmatrix} x\\ y\end{bmatrix} = \begin{bmatrix} y\\ x\end{bmatrix}$

i.e. multiplication with A is reflection through the line y = x.

- $A\begin{bmatrix} 1\\1 \end{bmatrix} = 1 \cdot \begin{bmatrix} 1\\1 \end{bmatrix} \rightsquigarrow x = \begin{bmatrix} 1\\1 \end{bmatrix}$ is an eigenvector with eigenvalue $\lambda = 1$.
- $A\begin{bmatrix}1\\-1\end{bmatrix} = -1 \cdot \begin{bmatrix}1\\-1\end{bmatrix} \rightsquigarrow x = \begin{bmatrix}1\\-1\end{bmatrix}$ is an eigenvector with eigenvalue $\lambda = -1$.







How to solve $Ax = \lambda x$

Key observation: $\iff A \boldsymbol{x} = \lambda \boldsymbol{x}$ $\iff A \boldsymbol{x} - \lambda \boldsymbol{x} = \boldsymbol{0}$ $\iff (A - \lambda I) \boldsymbol{x} = \boldsymbol{0}$

This homogeneous system has a nontrivial solution if and only if $det (A - \lambda I) = 0$.

Recipe. To find eigenvectors and eigenvalues of A.
(a) First, find the eigenvalues λ by solving det (A - λI) = 0.
(b) Then, for each eigenvalue λ, find corresponding eigenvectors by solving (A - λI)x = 0.

Example 151. Find the eigenvectors and eigenvalues of $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$.

Solution.

- $A \lambda I = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 \lambda & 1 \\ 1 & 3 \lambda \end{bmatrix}$
- det $(A \lambda I) = \begin{vmatrix} 3 \lambda & 1 \\ 1 & 3 \lambda \end{vmatrix} = (3 \lambda)^2 1 = \lambda^2 6\lambda + 8 = 0$ $\implies \lambda_1 = 2, \ \lambda_2 = 4$

det $(A - \lambda I) = \lambda^2 - 6\lambda + 8$ is the characteristic polynomial of A. Its roots are the eigenvalues of A.

• Find eigenvectors with eigenvalue $\lambda_1 = 2$:

 $A - \lambda_1 I = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ Solutions to $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \mathbf{x} = \mathbf{0}$ have basis $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$. So: $\mathbf{x}_1 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ is an eigenvector with eigenvalue $\lambda_1 = 2$.

All other eigenvectors with $\lambda = 2$ are multiples of \boldsymbol{x}_1 . span $\left\{ \begin{bmatrix} -1\\1 \end{bmatrix} \right\}$ is the eigenspace for eigenvalue $\lambda = 2$.

• Find eigenvectors with eigenvalue $\lambda_2 = 4$:

 $\begin{aligned} A - \lambda_2 I &= \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \\ \text{Solutions to} \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \boldsymbol{x} = \boldsymbol{0} \text{ have basis} \begin{bmatrix} 1 \\ 1 \end{bmatrix}. \\ \text{So: } \boldsymbol{x}_2 &= \begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ is an eigenvector with eigenvalue } \lambda_2 = 4. \end{aligned}$

The eigenspace for eigenvalue $\lambda = 4$ is span $\left\{ \begin{bmatrix} 1\\1 \end{bmatrix} \right\}$.

• We check our answer:

$$\begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ 2 \end{bmatrix} \stackrel{\checkmark}{=} 2 \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} \stackrel{\checkmark}{=} 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Example 152. Find the eigenvectors and the eigenvalues of $A = \begin{bmatrix} 3 & 2 & 3 \\ 0 & 6 & 10 \\ 0 & 0 & 2 \end{bmatrix}$.

Solution.

• The characteristic polynomial is:

$$\det (A - \lambda I) = \begin{vmatrix} 3 - \lambda & 2 & 3\\ 0 & 6 - \lambda & 10\\ 0 & 0 & 2 - \lambda \end{vmatrix} = (3 - \lambda)(6 - \lambda)(2 - \lambda)$$

• A has eigenvalues 2, 3, 6.

The eigenvalues of a triangular matrix are its diagonal entries.

- $\lambda_1 = 2$: $(A - \lambda_1 I) \boldsymbol{x} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 10 \\ 0 & 0 & 0 \end{bmatrix} \boldsymbol{x} = \boldsymbol{0} \implies \boldsymbol{x}_1 = \begin{bmatrix} 2 \\ -5/2 \\ 1 \end{bmatrix}$
- $\lambda_2 = 3$: $(A - \lambda_2 I) \boldsymbol{x} = \begin{bmatrix} 0 & 2 & 3 \\ 0 & 3 & 10 \\ 0 & 0 & -1 \end{bmatrix} \boldsymbol{x} = \boldsymbol{0} \implies \boldsymbol{x}_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ • $\lambda_3 = 6$:
- $\lambda_3 = 6$: $(A - \lambda_3 I) \boldsymbol{x} = \begin{bmatrix} -3 & 2 & 3 \\ 0 & 0 & 10 \\ 0 & 0 & -4 \end{bmatrix} \boldsymbol{x} = \boldsymbol{0} \implies \boldsymbol{x}_3 = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}$
- In summary, A has eigenvalues 2, 3, 6 with corresponding eigenvectors $\begin{bmatrix} 2\\ -5/2\\ 1 \end{bmatrix}$, $\begin{bmatrix} 1\\ 0\\ 0\\ 0 \end{bmatrix}$, $\begin{bmatrix} 2/3\\ 1\\ 0\\ 0 \end{bmatrix}$.

Example 153. (Tuesday quiz!) Find the eigenvectors and eigenvalues of $A = \begin{bmatrix} 0 & -2 \\ -4 & 2 \end{bmatrix}$.