Example 125. Suppose V and W are subspaces of \mathbb{R}^n , and that v_1, v_2 is a basis for V, and w_1, w_2, w_3 is a basis for W. What can you say about dim U with $U = \operatorname{span}\{v_1, v_2, w_1, w_2, w_3\}$?

Solution. dim $U \in \{3, 4, 5\}$ Why?

Recall that a basis of V is a list of vectors in V, which span V and which are linearly independent. The following is a rephrasing of that:

Let $v_1, ..., v_d$ be a basis of V. Every vector in V can be written uniquely as a linear combination of $v_1, ..., v_d$.

Why? "can be written" because a basis spans V. "uniquely" because basis vectors are linearly independent.

Example 126.

(a) Is $U = \left\{ \begin{bmatrix} a-2b\\ a+b\\ b \end{bmatrix} : a, b \in \mathbb{R} \right\}$ a vector space? Solution. Since $\begin{bmatrix} a-2b\\ a+b\\ b \end{bmatrix} = a \begin{bmatrix} 1\\ 1\\ 0 \end{bmatrix} + b \begin{bmatrix} -2\\ 1\\ 1\\ 1 \end{bmatrix}$, we have $U = \operatorname{span}\left\{ \begin{bmatrix} 1\\ 1\\ 0\\ \end{bmatrix}, \begin{bmatrix} -2\\ 1\\ 1\\ 1 \end{bmatrix} \right\}$. In particular, U is a vector space. (b) Are $\begin{bmatrix} 1\\ 2\\ 1\\ \end{bmatrix}$ or $\begin{bmatrix} -1\\ 2\\ 1\\ \end{bmatrix}$ in U? Solution. Clearly, $v_1 = \begin{bmatrix} 1\\ 1\\ 0\\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} -2\\ 1\\ 1\\ 1 \end{bmatrix}$ are a basis for U. • Since $\begin{bmatrix} 1& -2\\ 1& 1\\ 0& 1\\ 1& 1 \end{bmatrix}^2$ are a basis for U. • Since $\begin{bmatrix} 1& -2\\ 1& 1\\ 0& 1\\ 1& 1 \end{bmatrix}$ are a basis for U. • On the other hand, $\begin{bmatrix} 1& -2\\ 1& -2\\ 1& 0\\ 0& 1\\ 1& 1 \end{bmatrix}^2$ are a basis for U. • On the other hand, $\begin{bmatrix} 1& -2\\ 1& -2\\ 1& 1\\ 0& 1\\ 1& 1 \end{bmatrix}^2$ are a basis for U. • On the other hand, $\begin{bmatrix} 1& -2\\ 1& -2\\ 1& 1\\ 0& 1\\ 1& 1 \end{bmatrix}^2$ by $\begin{bmatrix} 1& -2\\ 0& -3\\ 0& 1\\ 1& 1 \end{bmatrix}^2$ has the unique solution $x = \begin{bmatrix} 1\\ 1\\ 2\\ 1\\ 1 \end{bmatrix}$, which shows that the vector $\begin{bmatrix} -1\\ 2\\ 1\\ 1 \end{bmatrix}$ is in U and that, in our basis, it can be uniquely written as $\begin{bmatrix} -1\\ 2\\ 1\\ 2\\ 1 \end{bmatrix} = 1v_1 + 1v_2$. Important comment. This illustrates that every vector in U can be (uniquely) represented by its coeffi-

cients when expressing it in our basis of U. Since dim U = 2, these are two coefficients (here, 1 and 1) which determine every vector in U. This allows us to work with U as if it was \mathbb{R}^2 .

This is especially important, because vector spaces can be very abstract. For instance, V could consists of certain polynomials. But, once we pick a basis for V, we can start working with V as if it was one of the familiar spaces \mathbb{R}^n (assuming that V has finite dimension).

(c) Is
$$W = \left\{ \begin{bmatrix} a-2b\\a+b\\1 \end{bmatrix} : a, b \in \mathbb{R} \right\}$$
 a vector space?

Solution. Note that $\begin{bmatrix} 0\\0\\0 \end{bmatrix} \notin W$. (Why?) However, every span contains the zero vector. (Again, why?) Hence, W is not a vector space.

Every vector space contains the/a zero vector.

(d) Is $W = \left\{ \left[\begin{array}{c} x \\ y \end{array} \right] : x, y \ge 0 \right\}$ a vector space?

Solution. Note that $\begin{bmatrix} 1\\0 \end{bmatrix} \in W$. Therefore, if W is a vector space, then any vector in span $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix} \right\}$ has to be in W. However, for instance, $-1 \cdot \begin{bmatrix} 1\\0 \end{bmatrix}$ is not in W. Hence, W is not a vector space.

(e) Is
$$W = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} : a+b+2c=1 \right\}$$
 a vector space?

Solution. Note that $\begin{bmatrix} 0\\0\\0 \end{bmatrix} \notin W$. (Why?) Hence, W is not a vector space.

(f) Is
$$W = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} : a+b+2c=0 \right\}$$
 a vector space?

Solution. Note that W contains precisely the solutions $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ to the linear equation $\begin{bmatrix} 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0$. In other words, W is nothing but null($\begin{bmatrix} 1 & 1 & 2 \end{bmatrix}$). In particular, W is a vector space.

We have introduced vector spaces as sets of vectors that can be written as spans. Here is a slightly more abstract characterization of vector spaces:

A vector space is a nonempty set V of vectors such the	nat
• if $oldsymbol{v},oldsymbol{w}\in V$, then $oldsymbol{v}+oldsymbol{w}\in V$,	[closed under addition]
• if $\boldsymbol{v} \in V$ and $r \in \mathbb{R}$, then $r\boldsymbol{v} \in V$.	[closed under scalar multiplication]
In particular, every vector space has to contain the zero vector. (Why?)	

Note that the two requirements can be combined by saying that, if $v, w \in V$, then any linear combination $rv + sw \in V$. And we are back at saying that V should be a span $(V = \operatorname{span} V)$.