
Sketch of Lecture 14 Tue, 10/6/2015

Example 95. Find the general solution to

[

1 2 1 4
−1 0 1 0

]

x=

[

3
−1

]

.

Solution. We eliminate

[

1 2 1 4 3
−1 0 1 0 −1

]

>

(do it!)

RREF
[

1 0 −1 0 1
0 1 1 2 1

]

.

We set x3 = s1 and x4 = s2 because these are our free variables. Then, x1 = 1+ s1 and x2= 1− s1 − 2s2.
So, our general solution to Ax= b is

x=









1+ s1
1− s1− 2s2

s1
s2
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
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1
1
0
0









particular solution

+ s1









1
−1
1
0









+ s2




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

0
−2
0
1









.

general solution of Ax=0

where s1 and s2 can be any numbers.

Example 96. Proceeding by some unknown technique (or divine inspiration), an alien proposes
instead that the general solution to the previous problem is

x=









0
0
−1
1









+ a









1
1
1
−1









+ b









2
0
2
−1









.

Are you both right?

Solution. Short answer: Yes, this is another way to write the same general solution in different form.

First off, we can quickly check that the alien solution is indeed a solution. For that, we check that
[ 0 0 −1 1 ]T is a particular solution of Ax= b and that [ 1 1 1 −1 ]T and [ 2 0 2 −1 ]T are solu-

tions to Ax=0. Indeed:

[

1 2 1 4
−1 0 1 0

]









0
0
−1
1









=

[

3
−1

]

,

[

1 2 1 4
−1 0 1 0

]









1
1
1
−1









=

[

0
0

]

,

[

1 2 1 4
−1 0 1 0

]









2
0
2
−1









=

[

0
0

]

The other thing to be checked is that the alien solution is general (that is, it includes all the solutions and
doesn’t miss any). A cheap way to do that is to note that the two vectors [ 1 1 1 −1 ]T and [ 2 0 2 −1 ]T

are linearly independent (why?). Hence the alien solution has two genuine degrees of freedom (a choice for
a and for b). This is the same number of degrees of freedom as in our solution (which we already know is
general).

Vector spaces

Example 97. The previous example implied that

span


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


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
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
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
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.

We need to understand such collections of vectors better. These are not just sets of vectors
but these are spaces of vectors.
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Definition 98.

• A (vector) space is a set V of vectors that can be written as a span.

That is, V = span{w1,w2,
 } for some bunch of vectors w1,w2,


• If V = span{w1,w2,
 } and w1,w2,
 are linearly independent, then the vectors w1,w2,


are called a basis of V .

• The dimension of V is the number of elements in such a basis. (It is always the same.)

Example 99. The following are important spaces associated with an m×n matrix A.

• col(A) (the column space of A) is the span of the columns of A.

This is a subspace of Rm (because each column has m entries, and so lives in Rm).

• row(A) (the row space of A) is the span of the rows of A.

This is a subspace of Rn (because each row has n entries, and so lives in Rn).

• null(A) (the null space of A) is the set of all solutions to Ax=0.

This is also a subspace of Rn (because x has to have n entries for Ax to be defined).

Example 100. Explain why null(A) really is a vector space!

Note that col(A) and row(A) are defined as spans, so they are definitely spaces.

Solution. This is a consequence of our knowledge on solving the equation Ax=0. Since x=0 is a particular
solution, the general solution is always of the form 0 + s1w1 + s2w1 + 
 where s1, s2, 
 are the values
assigned to the free variables. In other words, null(A)= span{w1,w2,
 }.

Example 101. It follows from our first two examples today that

null

([

1 2 1 4
−1 0 1 0

])

= span
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Example 102. Convince yourself that R3 is a vector space. What is its dimension?

Solution. Note that R
3 =

{





a

b

c



 : a, b, c ∈R

}

. Writing





a

b

c



= a





1
0
0



+ b





0
1
0



+ c


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0
0
1



, we see that R
3

consists of all the linear combinations of





1
0
0


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
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0
1
0



,


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0
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

. In other words, R3 = span

{





1
0
0


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
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
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.

This demonstrates that R3 is a vector space.

Since they are clearly independent (why?!), the vectors





1
0
0



,





0
1
0



,





0
0
1



 form a basis of R3. This particular

basis is called the standard basis of R3. (In general, the standard basis of Rn is given by the columns of
the n×n identity matrix.) Since the basis consists of 3 vectors, the dimension of R3 is 3.

Example 103. Let V = span

{

[

1
0

]

,
[

0
1

]

,
[

2
3

]

}

. What is dimV ?

Solution. The vectors
[

1
0

]

,
[

0
1

]

,
[

2
3

]

are clearly dependent (why?!). Since,
[

2
3

]

=2
[

1
0

]

+3
[

0
1

]

, we have

that V = span

{
[

1
0

]

,
[

0
1

]
}

=R
2. In particular, dimV =2.

[By the way, we still say that V is a subspace of R2 even though, as was the case here, V might be all of R2.]
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