What we have learned so far

Linear systems

• Systems of equations can be written as Ax = b.

$$\begin{array}{ccccc} x_1 & - & 2x_2 & = & -1 \\ -x_1 & + & 3x_2 & = & 3 \end{array} \Rightarrow \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} \boldsymbol{x} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$

Sometimes, we represent the system by its augmented matrix $\begin{vmatrix} 1 & -2 & -1 \\ -1 & 3 & 3 \end{vmatrix}$.

• Thirdly, we can write the system in vector form as $x_1 \begin{bmatrix} 1 \\ -1 \end{bmatrix} + x_2 \begin{bmatrix} -2 \\ 3 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$.

In this form, we see that one way to think about the system is that we are trying to write the right-hand side vector as a linear combination of two other vectors.

- A linear system has either
 - no solution (such a system is called **inconsistent**),

 \iff echelon form contains row $\begin{bmatrix} 0 & \dots & 0 & b \end{bmatrix}$ with $b \neq 0$

- one unique solution,
 - \iff system is consistent and has no free variables
- infinitely many solutions.

 \iff system is consistent and has at least one free variable

• In order to solve the system Ax = b we do **Gaussian elimination** on $\begin{bmatrix} A & b \end{bmatrix}$.

From the (unique!) RREF, we can read off the general solution. For instance:

Matrices and vectors

• A linear combination of $v_1, v_2, ..., v_m$ is of the form

$$x_1\boldsymbol{v}_1 + x_2\boldsymbol{v}_2 + \ldots + x_m\boldsymbol{v}_m.$$

• span $\{v_1, v_2, ..., v_m\}$ is the set of all such linear combinations.

For instance, a span in \mathbb{R}^3 can be $\{\mathbf{0}\}$, a line, a plane, or all of \mathbb{R}^3 .

- To decide whether $oldsymbol{w}$ is a linear combination of $oldsymbol{v}_1, oldsymbol{v}_2, ..., oldsymbol{v}_m$,
- $v_1, v_2, ..., v_n$ are (linearly) independent if there is only the trivial solution to

$$x_1 \boldsymbol{v}_1 + x_2 \boldsymbol{v}_2 + \ldots + x_n \boldsymbol{v}_n = \boldsymbol{0}.$$

Matrices

- An $m \times n$ matrix A has m rows and n columns.
- The **transpose** A^T of a matrix A has rows and columns flipped.

$$\begin{bmatrix} 2 & 0 \\ 3 & 1 \\ -1 & 4 \end{bmatrix}^T = \begin{bmatrix} 2 & 3 & -1 \\ 0 & 1 & 4 \end{bmatrix}$$

• The product Ax of matrix times vector is

$$\begin{bmatrix} | & | & | \\ \boldsymbol{a}_1 & \boldsymbol{a}_2 & \cdots & \boldsymbol{a}_n \\ | & | & | \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = x_1 \boldsymbol{a}_1 + x_2 \boldsymbol{a}_2 + \ldots + x_n \boldsymbol{a}_n.$$

• The **inverse** A^{-1} of A is characterized by $A^{-1}A = I$ (or $AA^{-1} = I$).

$$\circ \quad \left[\begin{array}{c} a & b \\ c & d \end{array} \right] = \frac{1}{ad - bc} \left[\begin{array}{c} d & -b \\ -c & a \end{array} \right]$$

- Can compute A^{-1} using Gauss–Jordan method: $\begin{bmatrix} A & I \end{bmatrix} \xrightarrow{\mathsf{RREF}} \begin{bmatrix} I & A^{-1} \end{bmatrix}$
- Gaussian elimination can bring any matrix into an echelon form.

ſ	0		*	*	*	*	*	*	*	*	*
	0	0	0		*	*	*	*	*	*	*
	0	0	0	0		*	*	*	*	*	*
	0	0	0	0	0	0	0		*	*	*
ĺ	0	0	0	0	0	0	0	0		*	*
	0	0	0	0	0	0	0	0	0	0	0

And we can continue row reduction to obtain the (unique) RREF.

Using Gaussian elimination

Gaussian elimination and row reductions allow us to:

solve systems of linear systems

$$\begin{bmatrix} 0 & 3 & -6 & 4 & | & -5 \\ 3 & -7 & 8 & 8 & 9 \\ 3 & -9 & 12 & 6 & | & 15 \end{bmatrix} \overset{\mathsf{RREF}}{\longrightarrow} \begin{bmatrix} 1 & 0 & -2 & 0 & | & -24 \\ 0 & 1 & -2 & 0 & | & -7 \\ 0 & 0 & 0 & 1 & | & 4 \end{bmatrix} \quad \rightsquigarrow \quad \boldsymbol{x} = \begin{bmatrix} -24 + 2s_1 \\ -7 + 2s_1 \\ s_1 \\ 4 \end{bmatrix}$$

• compute the inverse of a matrix

$\begin{bmatrix} 2 & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} \frac{1}{2} & 0 & 0 \end{bmatrix}$		2 0 0 1	100	1 0	$0 \frac{1}{2}$	0	0
$\begin{vmatrix} -3 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \end{vmatrix}$	because	$-3 \ 0 \ 1 \ 0$	0 1 0	0 1	0 0	0	1
$\begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} \frac{3}{2} & 1 & 0 \end{bmatrix}$			001.	00	$1 \frac{3}{2}$	1	0

• determine whether a vector is a linear combination of other vectors

 $\begin{bmatrix} 1\\2\\3 \end{bmatrix} \text{ is a linear combination of } \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} \text{ and } \begin{bmatrix} 1\\2\\0 \end{bmatrix} \text{ if and only if the system } \begin{bmatrix} 1&1\\1&2\\1&0\\3 \end{bmatrix} \text{ is consistent.}$ (And each solution $\begin{bmatrix} x_1\\x_2 \end{bmatrix}$ gives a linear combination $\begin{bmatrix} 1\\2\\3 \end{bmatrix} = x_1 \begin{bmatrix} 1\\1\\1 \end{bmatrix} + x_2 \begin{bmatrix} 1\\2\\0 \end{bmatrix}$.)

Armin Straub straub@southalabama.edu