Sketch of Lecture 9

Example 70. Find the general solution of

$$\begin{bmatrix} 1 & 2 & 0 & -1 \\ -2 & -4 & 2 & 4 \end{bmatrix} \boldsymbol{x} = \begin{bmatrix} 4 \\ -2 \end{bmatrix}.$$

Solution. We eliminate:

$$\begin{bmatrix} 1 & 2 & 0 & -1 & | & 4 \\ -2 & -4 & 2 & 4 & | & -2 \end{bmatrix} \xrightarrow{R_2 + 2R_1 \Rightarrow R_2} \begin{bmatrix} 1 & 2 & 0 & -1 & | & 4 \\ 0 & 0 & 2 & 2 & | & 6 \end{bmatrix} \xrightarrow{\frac{1}{2}R_2 \Rightarrow R_2} \begin{bmatrix} 1 & 2 & 0 & -1 & | & 4 \\ 0 & 0 & 1 & 1 & | & 3 \end{bmatrix}$$

Our free variables are $x_2 = s_1$ and $x_4 = s_2$. We read off that $x_1 = 4 - 2s_1 + s_2$, $x_3 = 3 - s_2$. Hence, the general solution is

$$\boldsymbol{x} = \begin{bmatrix} 4 - 2s_1 + s_2 \\ s_1 \\ 3 - s_2 \\ s_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ 3 \\ 0 \end{bmatrix} + s_1 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + s_2 \begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \end{bmatrix}.$$
particular solution general solution to homogeneous eq.

In accordance with Theorem 67, the solution is given as a particular solution $\boldsymbol{x}_p = \begin{bmatrix} 4 & 0 & 3 & 0 \end{bmatrix}^T$ plus the general solution to the homogeneous equation $\begin{bmatrix} 1 & 2 & 0 & -1 \\ -2 & -4 & 2 & 4 \end{bmatrix} \boldsymbol{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

Linear independence

Example 71. The following is BAD! The general solution in the previous problem can also be written as

$$\boldsymbol{x} = \begin{bmatrix} 4 \\ 0 \\ 3 \\ 0 \end{bmatrix} + s_1 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + s_2 \begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \end{bmatrix} + s_3 \begin{bmatrix} 0 \\ 1 \\ -2 \\ 2 \end{bmatrix}.$$

[Check that $\begin{bmatrix} 0 & 1 & -2 & 2 \end{bmatrix}^T$ indeed solves the homogeneous equation.]

Mathematically, this is correct. But it is morally bad!! Note how pretentious it is: it suggests that there are three free parameters in the solution when there is really only two.

The vector after s_3 is entirely redundant because

0		[-2]		1]
1	_	1	1.9	0
-2	=	0	+ 2	-1
2		0		1

Definition 72. Vectors $v_1, v_2, ..., v_n$ are (linearly) dependent is there is a non-trivial linear combination

$$x_1\boldsymbol{v}_1 + x_2\boldsymbol{v}_2 + \ldots + x_n\boldsymbol{v}_n = \boldsymbol{0}.$$

[There is always the trivial linear combination in which all coefficients are 0: $x_1 = 0$, $x_2 = 0$, ..., $x_n = 0$.] Otherwise, the vectors are (linearly) independent. Example 73. The vectors $\begin{bmatrix} -2\\1\\0\\0 \end{bmatrix}$, $\begin{bmatrix} 1\\0\\-1\\1 \end{bmatrix}$, $\begin{bmatrix} 0\\1\\-2\\2 \end{bmatrix}$ are linearly dependent because $\begin{bmatrix} -2\\1\\0\\0 \end{bmatrix}$ + $2\begin{bmatrix} -2\\1\\0\\-1\\1 \end{bmatrix}$ + $2\begin{bmatrix} 1\\0\\-1\\1 \end{bmatrix}$ - $\begin{bmatrix} 0\\1\\-2\\2 \end{bmatrix}$ = $\begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}$

is a non-trivial linear combination of them which produces $\mathbf{0}$.

Example 74. Are the vectors $\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$, $\begin{bmatrix} 1\\2\\3\\3 \end{bmatrix}$, $\begin{bmatrix} -1\\1\\3\\3 \end{bmatrix}$ linearly independent?

Solution. We need to find out if

	1		1		$\begin{bmatrix} -1 \end{bmatrix}$		$\begin{bmatrix} 0 \end{bmatrix}$
x_1	1	$+x_{2}$	2	$+x_{3}$	1	=	0
	1		3		3		0

has any solutions besides the trivial solution $x_1 = x_2 = x_3 = 0$. But that's just asking whether a linear system (which is obviously consistent; why?!) has a unique solution or whether there are infinitely many solutions.

We therefore eliminate:

Γ	1	1	-1	0	$R_2 - R_1 \Rightarrow R_2$	1	1	-1	0		1	1	-1	0
	1	2	1	0	$\begin{vmatrix} R_3 - R_1 \Rightarrow R_3 \\ \checkmark \end{vmatrix}$	0	1	2	0	$R_3 - 2R_2 \Rightarrow R_3 \longrightarrow$	0	1	2	0
L	1	3	3	0	J	0	2	4	0		0	0	0	0

From the echelon form, we see that the system is consistent (it had to be!) and that it has infinitely many solutions (because there is a free variable).

Hence, our three vectors are not linearly independent.

Example 75. Demonstrate that the vectors $\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$, $\begin{bmatrix} 1\\2\\3\\3 \end{bmatrix}$, $\begin{bmatrix} -1\\1\\3\\3 \end{bmatrix}$ are linearly dependent.

Solution. We have already done the bulk of the work in the previous problem.

For a change, let us solve the system by back-substitution. $x_3 = s_1$ is free. Then, $x_2 = -2s_1$ and $x_1 = -x_2 + x_3 = 3s_1$. This means that

$$3s_1 \begin{bmatrix} 1\\1\\1 \end{bmatrix} - 2s_1 \begin{bmatrix} 1\\2\\3 \end{bmatrix} + s_1 \begin{bmatrix} -1\\1\\3 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}.$$

This is a non-trivial linear combination of our three vectors which produces the zero vector.

Note that setting s_1 produces a nice linear combination, and that every other linear combination is just a multiple.