The transpose of a matrix

Definition 62. Interchanging the rows and columns of A produces its **transpose** A^T .

Example 63.

(a) $\begin{bmatrix} 1 & 2 \\ 0 & 1 \\ -2 & 4 \end{bmatrix}^{T} = \begin{bmatrix} 1 & 0 & -2 \\ 2 & 1 & 4 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}^{T} = \dots$ (c) $\begin{bmatrix} 1 & 3 \\ 3 & 0 \end{bmatrix}^{T} = \begin{bmatrix} 1 & 3 \\ 3 & 0 \end{bmatrix}$

A matrix A such that $A^T = A$ is called symmetric.

(d)
$$[x_1 \ x_2 \ x_3]^T = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

[This is useful for typographical reasons, because column vectors take up so much space.]

Theorem 64. Let A, B be matrices of appropriate size. Then:

•
$$(A^T)^T = A$$

•
$$(A+B)^T = A^T + B^T$$

• $(AB)^T = B^T A^T$

(illustrated by the next example)

Example 65. Consider the matrices

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ -2 & 4 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}.$$

Compute:

(a)
$$AB = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix} =$$

(b) $(AB)^{T} = \begin{bmatrix} & & \\ & & \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & -2 \\ 2 & 1 & 4 \end{bmatrix} =$
(c) $B^{T}A^{T} = \begin{bmatrix} 1 & 3 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & -2 \\ 2 & 1 & 4 \end{bmatrix} =$
(d) $A^{T}B^{T} = \begin{bmatrix} 1 & 0 & -2 \\ 2 & 1 & 4 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 2 & 0 \end{bmatrix} =$

What's that fishy smell?

Armin Straub straub@southalabama.edu

Solving linear systems in the form Ax = b

Example 66. Our current homework asks if $\begin{bmatrix} 2\\ -1\\ 6 \end{bmatrix}$ is in span $\left\{ \begin{bmatrix} 1\\ -2\\ 0 \end{bmatrix}, \begin{bmatrix} 0\\ 1\\ 2 \end{bmatrix}, \begin{bmatrix} 5\\ -6\\ 8 \end{bmatrix} \right\}$.

This question is the same (why?!) as asking whether the equation

$$\begin{bmatrix} 1 & 0 & 5 \\ -2 & 1 & -6 \\ 0 & 2 & 8 \end{bmatrix} \boldsymbol{x} = \begin{bmatrix} 2 \\ -1 \\ 6 \end{bmatrix}$$
(1)

has a solution (i.e. whether the system is consistent). As part of the homework, we eliminated to find

Γ	1	0	5	2	DDEE	1	0	5	2]
	-2	1	-6	-1		0	1	4	3	.
L	0	2	8	6	RREF ~→	0	0	0	0]

[Recall that the RREF is unique. If you found a different RREF, then a (likely, small) error must have occured.] By Theorem 27, this system is consistent and so $\begin{bmatrix} 2 & -1 & 6 \end{bmatrix}^T$ is in the given span. Let us continue and solve (1). The RREF tells us that x_3 is a free variable, and we set $x_3 = s_1$. Then, $x_1 = 2 - 5s_1$ and $x_2 = 3 - 4s_1$. In vector notation, the general solution to (1) thus is

 $\boldsymbol{x} = \begin{bmatrix} 2-5s_1\\ 3-4s_1\\ s_1 \end{bmatrix} = \begin{bmatrix} 2\\ 3\\ 0 \end{bmatrix} + s_1 \begin{bmatrix} -5\\ -4\\ 1 \end{bmatrix}.$

Theorem 67. Let x_p be a particular solution to Ax = b. Then all solutions of Ax = b have the form $x_g = x_p + x_h$ where x_h is a solution to the associated **homogeneous system** Ax = 0.

Example 68. In the previous example, a particular solution is $\boldsymbol{x}_p = \begin{bmatrix} 2 & 3 & 0 \end{bmatrix}^T$ (but any other solution would work just as well). On the other hand, $\begin{bmatrix} -5 & -4 & 1 \end{bmatrix}^T$ solves the homogeneous system, as the following matrix-vector multiplication verifies:

[1	0	5]	$\begin{bmatrix} -5 \end{bmatrix}$	$\begin{bmatrix} 0 \end{bmatrix}$
-2	1	-6	-4 =	= 0
0	2	8	$\left[\begin{array}{c} -5\\ -4\\ 1 \end{array}\right] =$	

Example 69. Note that $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$ is a (particular) solution to $\begin{bmatrix} 1&0&5\\-2&1&-6\\0&2&8 \end{bmatrix} \boldsymbol{x} = \begin{bmatrix} 1\\-1\\2 \end{bmatrix}$. Theorem 67 implies that the general solution is $\begin{bmatrix} 1\\1\\0 \end{bmatrix} + s_1 \begin{bmatrix} -5\\-4\\1 \end{bmatrix}$.

[Because the associated homogeneous system is the same as before.]

Solve the system $\begin{bmatrix} 1 & 0 & 5 \\ -2 & 1 & -6 \\ 0 & 2 & 8 \end{bmatrix} x = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$ from scratch and verify that your answer agrees!

Armin Straub straub@southalabama.edu