Working with spans

Review 41. $\operatorname{span}\{v_1, v_2, ..., v_m\}$ is the set of all linear combinations

 $x_1\boldsymbol{v}_1 + x_2\boldsymbol{v}_2 + \ldots + x_m\boldsymbol{v}_m,$

where $x_1, x_2, ..., x_m$ can be any real numbers.

Example 42. Is
$$\begin{bmatrix} 1\\1\\0 \end{bmatrix}$$
 in span $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} -1\\1\\0 \end{bmatrix} \right\}$?
If so, write $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$ as a linear combination of $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$ and $\begin{bmatrix} -1\\1\\0 \end{bmatrix}$.
Solution. $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$ is in span $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} -1\\1\\0 \end{bmatrix} \right\}$ if and only if we can find x_1 and x_2 such that
 $x_1 \begin{bmatrix} 1\\0\\0 \end{bmatrix} + x_2 \begin{bmatrix} -1\\1\\0 \end{bmatrix} = \begin{bmatrix} 1\\1\\0 \end{bmatrix}$.

This is just the vector notation of the linear system with augmented matrix $\begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$.

This system is already in echelon form, and Theorem 27 tells us that it is consistent. Hence, our vector is in the given span.

Moreover, by back substitution, we find $x_2 = 1$ and $x_1 = 2$. This means

	1		[-1]		[1]	
2	0	+1	1	=	1	
	0		$\begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$		0	

Example 43. Is
$$\begin{bmatrix} 0 \\ -1 \\ 3 \end{bmatrix}$$
 in span $\left\{ \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} \right\}$? If so, write $\begin{bmatrix} 0 \\ -1 \\ 3 \end{bmatrix}$ as a linear combination of $\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$.

Solution. As in the previous example, $\begin{bmatrix} 0\\ -1\\ 3 \end{bmatrix}$ is in span $\left\{ \begin{bmatrix} 1\\ 1\\ 2 \end{bmatrix}, \begin{bmatrix} 2\\ 3\\ 1 \end{bmatrix} \right\}$ if and only if the linear system $\begin{bmatrix} 1 & 2\\ 1 & 3\\ 2 & 1 \end{bmatrix}$ is consistent. We eliminate:

$$\begin{bmatrix} 1 & 2 & 0 \\ 1 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix} \overset{R_2 - R_1 \Rightarrow R_2}{\underset{\longrightarrow}{}^{R_2 - 2R_1 \Rightarrow R_3}} \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & -1 \\ 0 & -3 & 3 \end{bmatrix} \overset{R_3 + 3R_2 \Rightarrow R_3}{\underset{\longrightarrow}{}^{R_3 + 3R_2 \Rightarrow R_3}} \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

By Theorem 27, this system is consistent. Hence, our vector is in the given span. By back substitution, we find $x_2 = -1$ and $x_1 = 2$. This means

$$2\begin{bmatrix} 1\\1\\2 \end{bmatrix} - 1\begin{bmatrix} 2\\3\\1 \end{bmatrix} = \begin{bmatrix} 0\\-1\\3 \end{bmatrix}.$$

Armin Straub straub@southalabama.edu

Example 44. Is
$$\begin{bmatrix} 1\\0\\0 \end{bmatrix}$$
 in span $\left\{ \begin{bmatrix} 1\\1\\2\\1 \end{bmatrix}, \begin{bmatrix} 2\\3\\1\\1 \end{bmatrix} \right\}$? If so, write $\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$ as a linear combination of $\begin{bmatrix} 1\\1\\2\\1 \end{bmatrix}$ and $\begin{bmatrix} 2\\3\\1\\1 \end{bmatrix}$

Solution. The only thing that changes in the previous example, is the right-hand side of the linear system. This means that the elimination steps are exactly the same!

[This is important for applications. It is often the case that a system needs to be solved for many different right-hand sides.]

$$\begin{bmatrix} 1 & 2 & | & 1 \\ 1 & 3 & | & 0 \\ 2 & 1 & | & 0 \end{bmatrix} \overset{R_2 - R_1 \Rightarrow R_2}{\underset{\sim \rightarrow}{\longrightarrow}} \begin{bmatrix} 1 & 2 & | & 1 \\ 0 & 1 & | & -1 \\ 0 & -3 & | & -2 \end{bmatrix} \overset{R_3 + 3R_2 \Rightarrow R_3}{\underset{\sim \rightarrow}{\longrightarrow}} \begin{bmatrix} 1 & 2 & | & 1 \\ 0 & 1 & | & -1 \\ 0 & 0 & | & -5 \end{bmatrix}$$

inconsistent. Hence,
$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 is not in span $\left\{ \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} \right\}.$

This system is

Matrix times vector

Definition 45. We say that A is a $m \times n$ matrix if it has m rows and n columns.

Example 46. $\begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$ is a 2×3 matrix.

$$\begin{bmatrix} 2 & 3 & | & 1 \\ -1 & 1 & | & -3 \end{bmatrix} \begin{cases} \text{row picture} & 2x_1 + 3x_2 = 1 \\ -x_1 + x_2 = -3 \\ \text{column picture} & x_1 \begin{bmatrix} 2 \\ -1 \end{bmatrix} + x_2 \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$$

We wish to write linear systems simply as $A\boldsymbol{x} = \boldsymbol{b}$. Here, $\begin{bmatrix} 2 & 3 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$.

Example 47. For this, we need $\begin{bmatrix} 2 & 3 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 2 \\ -1 \end{bmatrix} + x_2 \begin{bmatrix} 3 \\ 1 \end{bmatrix}$.

Definition 48. The product of a matrix A with a vector \boldsymbol{x} is a linear combination of the columns of A with weights given by the entries of \boldsymbol{x} . In other words,

$$A\boldsymbol{x} = x_1 \begin{pmatrix} \operatorname{col} \ 1\\ \operatorname{of} \ A \end{pmatrix} + x_2 \begin{pmatrix} \operatorname{col} \ 2\\ \operatorname{of} \ A \end{pmatrix} + \cdots$$

Example 49.

$$(a) \begin{bmatrix} 1 & 0 \\ 5 & 2 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 5 \end{bmatrix} + 1 \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 12 \end{bmatrix}$$
$$(b) \begin{bmatrix} 2 & 3 \\ 3 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
$$(c) \begin{bmatrix} 2 & 3 & 0 \\ 3 & 1 & 2 \\ 1 & -1 & 5 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} =$$
$$(d) \begin{bmatrix} 2 & 3 \\ 3 & 1 \\ 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ -2 \end{bmatrix} =$$

Armin Straub straub@southalabama.edu