Example 33. If $\boldsymbol{v}_1 = \begin{bmatrix} 2\\1 \end{bmatrix}$ and $\boldsymbol{v}_2 = \begin{bmatrix} -1\\1 \end{bmatrix}$, then $c_1\boldsymbol{v}_1 + c_2\boldsymbol{v}_2 = \begin{bmatrix} 2c_1 - c_2\\c_1 + c_2 \end{bmatrix}$.

Example 34. (Geometric description of \mathbb{R}^2) A vector $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ represents the point (x_1, x_2) in the plane. Better: an arrow from the origin to (x_1, x_2)

Given $x = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and $y = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, graph x, y, x + y, 2y.

Example 35. Express $\begin{bmatrix} 1\\5 \end{bmatrix}$ as a linear combination of $\begin{bmatrix} 1\\0 \end{bmatrix}$ and $\begin{bmatrix} 0\\1 \end{bmatrix}$.

Example 36. Express $\begin{bmatrix} 1\\5 \end{bmatrix}$ as a linear combination of $\begin{bmatrix} 2\\1 \end{bmatrix}$ and $\begin{bmatrix} -1\\1 \end{bmatrix}$.

Solution. We have to find c_1 and c_2 such that

$$c_1 \begin{bmatrix} 2\\1 \end{bmatrix} + c_2 \begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} 1\\5 \end{bmatrix}.$$

This is the same as:

$$\begin{array}{rcrcrc} 2c_1 & -c_2 & = & 1 \\ c_1 & +c_2 & = & 5 \end{array}$$

Solving, we find $c_1 = 2$ and $c_2 = 3$. Indeed,

$$2\begin{bmatrix} 2\\1 \end{bmatrix} + 3\begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} 1\\5 \end{bmatrix}$$

Example 37. Express $\begin{bmatrix} 4 \\ -1 \end{bmatrix}$ as a linear combination of $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

Armin Straub straub@southalabama.edu

The row and column picture

Example 38. We can think of the linear system

$$2x - y = 1$$
$$x + y = 5$$

in two different geometric ways. Here, there is a unique solution: x = 2, y = 3.

Row picture.

- Each equation defines a line in \mathbb{R}^2 .
- Which points lie on the intersection of these lines?
- (2, 3) is the (only) intersection of the two lines 2x y = 1 and x + y = 5.

Column picture.

• The system can be written as

$$x \begin{bmatrix} 2\\1 \end{bmatrix} + y \begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} 1\\5 \end{bmatrix}.$$

- Which linear combinations of $\begin{bmatrix} 2\\1 \end{bmatrix}$ and $\begin{bmatrix} -1\\1 \end{bmatrix}$ produce $\begin{bmatrix} 1\\5 \end{bmatrix}$?
- (2,3) are the coefficients of the (only) such linear combination.

$$x_1 \boldsymbol{v}_1 + x_2 \boldsymbol{v}_2 + \ldots + x_m \boldsymbol{v}_m,$$

where $x_1, x_2, ..., x_m$ can be any real numbers. We write $\mathrm{span}\{m{v}_1, m{v}_2, ..., m{v}_m\}$ for this set.

Example 40.

- span $\left\{ \begin{bmatrix} 2\\1 \end{bmatrix} \right\}$ consists of all multiples of $\begin{bmatrix} 2\\1 \end{bmatrix}$. Geometrically, this is a line.
- $\operatorname{span}\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}$ consists of all vectors in \mathbb{R}^2 (the full plane). Why?!