The row-reduced echelon form

Review. Let us solve the following system by Gaussian elimination.

First, we write down the **augmented matrix**, then we perform **elementary row operations** until we arrive at an equivalent **echelon form**:

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 3 & -4 & -5 & 8 \\ -4 & 5 & 9 & -9 \end{bmatrix} \overset{R_2 - 3R_1 \Rightarrow R_2}{\underset{\longrightarrow}{}^{R_2 + 4R_1 \Rightarrow R_3}} \begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 2 & -8 & 8 \\ 0 & -3 & 13 & -9 \end{bmatrix} \overset{R_3 + \frac{3}{2}R_2 \Rightarrow R_3}{\underset{\longrightarrow}{}^{R_3 + \frac{3}{2}R_2 \Rightarrow R_3}} \begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 2 & -8 & 8 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

(We can now stop and solve the system by back-substitution.) Instead we reduce further:

Γ	1	-2	1	0	$R_1 - R_3 \Rightarrow R_1$	1	-2	0	-3	$\begin{vmatrix} R_1 + R_2 \Rightarrow R_1 \\ {}^1 R_2 \Rightarrow R_2 \end{vmatrix}$	1	0	0	29
	0	2	-8	8	$R_2 + 8R_3 \Rightarrow R_2$	C	2	0	32	$2^{112} \rightarrow 112$	0	1	0	16
L	0	0	1	3		C	0	1	3		0	0	1	3

This is the (row)-reduced echelon form. From it, we can read off the solution $x_1 = 29$, $x_2 = 16$, $x_3 = 3$ without any further computations.

Definition 20. A matrix is in (row)-reduced echelon form (RREF) if, in addition to being in echelon form, it also satisfies:

- (4) Each pivot is 1.
- (5) Each pivot is the only nonzero entry in its column.

Example 21. The matrix from Example 18 put into reduced echelon form:

0		*	*	*	*	*	*	*	*	*		0	1	*	0	0	*	*	0	0	*	*
0	0	0		*	*	*	*	*	*	*		0	0	0	1	0	*	*	0	0	*	*
0	0	0	0		*	*	*	*	*	*		0	0	0	0	1	*	*	0	0	*	*
0	0	0	0	0	0	0		*	*	*	\sim	0	0	0	0	0	0	0	1	0	*	*
0	0	0	0	0	0	0	0		*	*		0	0	0	0	0	0	0	0	1	*	*
0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0

Locate the **pivots**!

The general solution of a linear system

After row reduction to echelon form, we can easily solve a linear system. (especially after reduction to reduced echelon form)

Example 22. Consider the following linear system:

ſ	1	6	0	3	0	0		x_1	$+6x_{2}$		$+3x_{4}$		=	0
I	0	0	1	-8	0	5	$\sim \rightarrow$			x_3	$-8x_{4}$		=	5
	0	0	0	0	1	7						x_5	=	7

- The augmented matrix is already in reduced echelon form. (Check!)
- The pivots are located in columns 1, 3, 5.
 The corresponding variables x₁, x₃, x₅ are called leading variables (or pivot variables).
- The remaining variables x₂, x₄ are called free variables.
 We have no equations to solve for the free variables. Instead, the free variables can take any values.
 We set x₂ = s₁ and x₄ = s₂, where s₁, s₂ can be any numbers (free parameters).
- Solving each equation for the pivot variable, we find that the **general solution** (in parametric form) of this system is:

$$\begin{array}{cccccc} x_1 & +6s_1 & +3s_2 & = & 0 \\ & x_3 & -8s_2 & = & 5 \\ & & & x_5 & = & 7 \end{array} \qquad \qquad \begin{cases} x_1 = -6s_1 - 3s_2 \\ x_2 = s_1 \\ x_3 = 5 + 8s_2 \\ x_4 = s_2 \\ x_5 = 7 \end{array}$$

Example 23. Find the general solution of the following linear system:

Solution. A single operation produces an echelon form: (Which are going to be our free variables?!)

$$\begin{bmatrix} 1 & 2 & -1 & -1 & | & 1 \\ 3 & 6 & -2 & 1 & | & 8 \end{bmatrix} \xrightarrow{R_2 - 3R_1 \Rightarrow R_2} \begin{bmatrix} 1 & 2 & -1 & -1 & | & 1 \\ 0 & 0 & 1 & 4 & | & 5 \end{bmatrix}$$

One more operation yields the reduced echelon form:

$$\underset{\longrightarrow}{R_1 + R_2 \Rightarrow R_1} \begin{bmatrix} 1 & 2 & 0 & 3 & 6 \\ 0 & 0 & 1 & 4 & 5 \end{bmatrix}$$

$$x_1 + 2x_2 + 3x_4 = 6 \\ x_3 + 4x_4 = 5 \end{bmatrix}$$

The free variables are x_2, x_4 . We set $x_2 = s_1$ and $x_4 = s_2$. The general solution is:

$$x_1 = 6 - 2s_1 - 3s_2$$

$$x_2 = s_1$$

$$x_3 = 5 - 4s_2$$

$$x_4 = s_2$$

[Here, s_1 and s_2 can be any numbers. The resulting values for x_1 , x_2 , x_3 , x_4 always solve the system. Our solution is general, meaning that there are no further solutions.]