Matrix notation

$2x_1 - 4x_2 = -2$	$\begin{bmatrix} 2 & -4 & -2 \end{bmatrix}$		
$-x_1 + 3x_2 = 3$	$\left[\begin{array}{c c} 2 & -4 & -2 \\ -1 & 3 & 3 \end{array}\right]$		
	(augmented matrix)		

Example 11. What is the augmented matrix for the following linear system?

Example 12. Let us solve the system in matrix notation.

	$\left[\begin{array}{rrrr r} 2 & -4 & -2 \\ -1 & 3 & 3 \end{array}\right]$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\begin{array}{c} R_2 + \frac{1}{2}R_1 \Rightarrow R_2 \\ \leadsto \end{array}$	$\left[\begin{array}{rrrr} 2 & -4 & & -2 \\ 0 & 1 & & 2 \end{array}\right]$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Hence, $x_2 = 2$ and, by back-substitution, we find (from $2x_1 - 4 \cdot 2 = -2$) that $x_1 = 3$. Alternatively, instead of back-substitution, we can also continue with row operations:

$R_1 + 4R_2 \Rightarrow R_1$	2	0	$\left[\begin{array}{c} 6\\2\end{array}\right]$	$2x_1$	= 6
~~~	0	1	2		$x_2 = 2$
$\frac{1}{2}R_1 \Longrightarrow R_1$	1	0	3	$x_1$	= 3
$^{2} \rightsquigarrow$	0	1	2		$x_2 = 2$

**Definition 13.** An elementary row operation is one of the following:

- (replacement) Add one row to a multiple of another row.
- (interchange) Interchange two rows.
- (scaling) Multiply all entries in a row by a nonzero constant.

**Definition 14.** Two matrices are **row equivalent**, if one matrix can be transformed into the other matrix by a sequence of elementary row operations.

**Theorem 15.** If the augmented matrices of two linear systems are row equivalent, then the two systems have the same solution set.

**Example 16.** Let us solve the following system:

	$x_1 - 2x_2$	$+ x_3 = 0$
	$3x_1 - 4x_2$	$-5x_3 = 8$
	$-4x_1 + 5x_2$	$+ 9x_3 = -9$
	$\begin{bmatrix} 1 & -2 & 1 & 0 \end{bmatrix}$	$x_1 - 2x_2 + x_3 = 0$
	$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 3 & -4 & -5 & 8 \\ -4 & 5 & 9 & -9 \end{bmatrix}$	$3x_1 - 4x_2 - 5x_3 = 8$
	$\begin{bmatrix} -4 & 5 & 9 \end{bmatrix} -9 \end{bmatrix}$	$-4x_1 + 5x_2 + 9x_3 = -9$
$R_2 - 3R_1 \Rightarrow R_2$	$\begin{bmatrix} 1 & -2 & 1 & 0 \end{bmatrix}$	$x_1 - 2x_2 + x_3 = 0$
$R_3 + 4R_1 \Rightarrow R_3$	0  2  -8  8	$2x_2 - 8x_3 = 8$
$\rightsquigarrow$	$\begin{bmatrix} 0 & -3 & 13 & -9 \end{bmatrix}$	$-3x_2 + 13x_3 = -9$
2	$\begin{bmatrix} 1 & -2 & 1 & 0 \end{bmatrix}$	$x_1 - 2x_2 + x_3 = 0$
$R_3 + \frac{3}{2} R_2 \Rightarrow R_3$	0  2  -8  8	$2x_2 - 8x_3 = 8$
		$x_3 = 3$

We could stop now and do back-substitution (do it!!), or we can continue:

$\begin{array}{c} R_1 - R_3 \Rightarrow R_1 \\ R_2 + 8R_3 \Rightarrow R_2 \\ \swarrow \end{array}$	$\begin{bmatrix} 1 & -2 \\ 0 & 2 \\ 0 & 0 \end{bmatrix}$	0 32	$\begin{array}{rrrr} x_1 & - & 2x_2 \\ & & 2x_2 \end{array}$	= -3 = 32
$R_1 + R_2 \Rightarrow R_1$ $\frac{1}{2}R_2 \Rightarrow R_2$ $\xrightarrow{\sim}$	$\begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$	$ \begin{array}{c cccc} 1 & 3 \\ 0 & 29 \\ 0 & 16 \\ 1 & 3 \end{array} $	$egin{array}{c} x_1 & & \ & x_2 & & \ & & x_3 & & \ & & & x_3 & & \ & & & & x_3 & & \ & & & & & x_3 & & \ & & & & & & x_3 & & \ & & & & & & & x_3 & & \ & & & & & & & x_3 & & \ & & & & & & & & x_3 & & \ & & & & & & & & x_3 & & \ & & & & & & & & & x_3 & & \ & & & & & & & & & x_3 & & \ & & & & & & & & & x_3 & & \ & & & & & & & & & x_3 & & \ & & & & & & & & & x_3 & & \ & & & & & & & & x_3 & & \ & & & & & & & & x_3 & & \ & & & & & & & & x_3 & & \ & & & & & & & & x_3 & & \ & & & & & & & & x_3 & & \ & & & & & & & x_3 & & & \ & & & & & & & x_3 & & & \ & & & & & & & x_3 & & & & x_3 & & \ & & & & & & & & x_3 & & & & x_3 & & \ & & & & & & & & x_3 & & & & x_3 & & & & x_3 & & \ & & & & & & & & x_3 & & & x_3 & & & & x_3 & & x_3 & & & x_3 & & x_3 & & & x_3 $	$x_3 = 3$ = 29 = 16 = 3

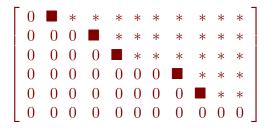
We find the solution  $(x_1, x_2, x_3) = (29, 16, 3)$ . (Do you see how this system is related to the one from last class?)

Note that we are aiming for a stair-case shape in our approach. More precisely:

## Definition 17. A matrix is in echelon form (or row echelon form) if:

- (a) Each leading entry (i.e. leftmost nonzero entry) of a row is in a column to the right of the leading entry of the row above it.
- (b) All zero rows are at the bottom of the matrix.

**Example 18.** Here is a representative matrix in echelon form.



(∗ stands for any value, and ■ for any nonzero value.)

## Definition 19.

- A leading entry in an echelon form is called a **pivot**.
- A column containing a pivot is called a **pivot column**.