Homework #6

Please print your name:

Problem 1. Let
$$A = \begin{bmatrix} 1 & 2 & 0 & 4 \\ 2 & 4 & -1 & 3 \\ 3 & 6 & 2 & 22 \\ 4 & 8 & 0 & 16 \end{bmatrix}$$
.

(a) Find a basis for col(A). What is the dimension of col(A)?

(b) Is the vector
$$\boldsymbol{u} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
 in col(A)?

Hint: Note that this is the same question as: "Does $A\mathbf{x} = \mathbf{u}$ have a solution?" However, save yourself time and observe that if, say, $\mathbf{v}_1, \mathbf{v}_2$ form a basis for col(A), then you only need to determine whether the simpler system $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 = \mathbf{u}$ has a solution (because we got rid of free variables, this system either has a unique solution or none at all).

- (c) Find a basis for $col(A^T)$. What is the dimension of $col(A^T)$?
- (d) Is the vector $\boldsymbol{w} = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 4 \end{bmatrix}$ in $\operatorname{col}(A^T)$? Is \boldsymbol{w} in $\operatorname{col}(A)$? Conclude that $\operatorname{col}(A) \neq \operatorname{col}(A^T)$ (but both spaces have the same dimension).
- (e) If possible, write the vector $\boldsymbol{a} = \begin{bmatrix} 3 \\ 4 \\ 13 \\ 12 \end{bmatrix}$ as a linear combination of your basis of col(A).