Homework #6

Please print your name:

Problem 1. Let
$$A = \begin{bmatrix} 1 & 2 & 0 & 4 \\ 2 & 4 & -1 & 3 \\ 3 & 6 & 2 & 22 \\ 4 & 8 & 0 & 16 \end{bmatrix}$$

(a) Find a basis for col(A). What is the dimension of col(A)?

(b) Is the vector
$$\boldsymbol{u} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
 in col(A)?

Hint: Note that this is the same question as: "Does Ax = u have a solution?" However, save yourself time and observe that if, say, v_1 , v_2 form a basis for col(A), then you only need to determine whether the simpler system $x_1v_1 + x_2v_2 = u$ has a solution (because we got rid of free variables, this system either has a unique solution or none at all).

- (c) Find a basis for $col(A^T)$. What is the dimension of $col(A^T)$?
- (d) Is the vector $\boldsymbol{w} = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 4 \end{bmatrix}$ in $\operatorname{col}(A^T)$? Is \boldsymbol{w} in $\operatorname{col}(A)$? Conclude that $\operatorname{col}(A) \neq \operatorname{col}(A^T)$ (but both spaces have the same dimension).

(e) If possible, write the vector $\boldsymbol{a} = \begin{bmatrix} 3 \\ 4 \\ 13 \\ 12 \end{bmatrix}$ as a linear combination of your basis of col(A).

Solution.

(a) We compute an echelon form of A:

$$\begin{bmatrix} 1 & 2 & 0 & 4 \\ 2 & 4 & -1 & 3 \\ 3 & 6 & 2 & 22 \\ 4 & 8 & 0 & 16 \end{bmatrix} \overset{R_2 - 2R_1 \Rightarrow R_2}{\overset{R_3 - 3R_1 \Rightarrow R_3}{\overset{R_4 - 4R_1 \Rightarrow R_4}{\overset{R_4 - 4R_1 & R_4}{\overset{R_4 - 4R_1 &$$

In particular, the dimension of col(A) is 2.

(b) Since
$$\operatorname{col}(A) = \operatorname{span}\left\{ \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}, \begin{bmatrix} 0\\-1\\2\\0 \end{bmatrix} \right\}$$
, we need to decide whether $x_1 \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix} + x_2 \begin{bmatrix} 0\\-1\\2\\0 \end{bmatrix} = u$ has a solution.
$$\begin{bmatrix} 1&0&|&1\\2&-1&|&0\\3&2&|&0\\4&0&|&0 \end{bmatrix} \stackrel{R_2 - 2R_1 \Rightarrow R_2}{\underset{R_3 - 3R_1 \Rightarrow R_3}{\underset{R_4 - 4R_1 \Rightarrow R_4}{\underset{M_4 - 4R_1 \atop{M_4 - 4R_1 \atop{M_4}}{\underset{M_4$$

We stop here because we can already tell that this system is inconsistent. Hence,
$$u$$
 is not in $col(A)$

(c) We compute an echelon form of A^T :

The

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ 0 & -1 & 2 & 0 \\ 4 & 3 & 22 & 16 \end{bmatrix} \overset{R_2 - 2R_1 \Rightarrow R_2}{\underset{\searrow}{\longrightarrow}} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & 2 & 0 \\ 0 & -5 & 10 & 0 \end{bmatrix} \overset{\text{swap zero}}{\underset{\bigotimes}{\longrightarrow}} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & -1 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \overset{R_3 - 5R_2 \Rightarrow R_3}{\underset{\bigotimes}{\longrightarrow}} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & -1 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
pivot columns are the first and second. Hence, a basis for $\operatorname{col}(A^T)$ is $\begin{bmatrix} 1 \\ 2 \\ 0 \\ 4 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \\ -1 \\ 3 \end{bmatrix}.$

In particular, the dimension of $col(A^T)$ is 2.

(d) The vector \boldsymbol{w} is obviously in col (A^T) , because it is the first column of A^T .

To see whether \boldsymbol{w} is in col(A), we proceed as we did for \boldsymbol{u} (note that, for the first step, the row operations are the same; only the right-hand side changes):

ſ	1	0	1	$ \begin{array}{c} R_2 - 2R_1 \Rightarrow R_2 \\ R_3 - 3R_1 \Rightarrow R_3 \\ R_4 - 4R_1 \Rightarrow R_4 \\ \swarrow \end{array} $	1	0	1		1	0	1
	2	-1	2	$R_4 - 4R_1 \Rightarrow R_4$	0	-1	0	$R_3 + 2R_2 \Rightarrow R_3 \Rightarrow R_3$	0	-1	0
	3	2	0	~~>	0	2	-3	~~>	0	0	-3
	4	0	4		0	0	0		0	0	0

This system is inconsistent. Hence, \boldsymbol{w} is not in $\operatorname{col}(A)$.

Because \boldsymbol{w} is in $\operatorname{col}(A^T)$ but not in $\operatorname{col}(A)$, we see that these are two different spaces. However, they both are subspaces of \mathbb{R}^4 and have dimension 2.

(e) We proceed as we did for the vectors \boldsymbol{u} and \boldsymbol{w} :

$$\begin{bmatrix} 1 & 0 & 3 \\ 2 & -1 & 4 \\ 3 & 2 & 13 \\ 4 & 0 & 12 \end{bmatrix} \xrightarrow{R_2 - 2R_1 \Rightarrow R_2}_{R_3 - 3R_1 \Rightarrow R_3} \begin{bmatrix} 1 & 0 & 3 \\ 0 & -1 & -2 \\ 0 & 2 & 4 \\ 0 & 0 & 0 \end{bmatrix}_{R_3 + 2R_2 \Rightarrow R_3} \begin{bmatrix} 1 & 0 & 3 \\ 0 & -1 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

This system has solution $x_1 = 3$ and $x_2 = 2$, which implies that $a = 3 \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} + 2 \begin{bmatrix} 0 \\ -1 \\ 2 \\ 0 \end{bmatrix}$.