Homework #5

(No computation needed!)

Please print your name:

Problem 1. Consider $A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 3 \\ 0 & 1 & 1 \end{bmatrix}$.

- (a) Calculate A^{-1} .
- (b) Using (a), solve the system $A\boldsymbol{x} = \begin{bmatrix} 2\\ 3\\ -1 \end{bmatrix}$.

Problem 2. Consider the vectors $\boldsymbol{v}_1 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}$, $\boldsymbol{v}_2 = \begin{bmatrix} 0\\1\\1 \end{bmatrix}$, $\boldsymbol{v}_3 = \begin{bmatrix} 1\\3\\1 \end{bmatrix}$, $\boldsymbol{v}_4 = \begin{bmatrix} 2\\3\\-1 \end{bmatrix}$.

- (a) Are the vectors $\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3, \boldsymbol{v}_4$ linearly independent?
- (b) Use part (b) of Problem 1 to write v_4 as a linear combination of v_1, v_2, v_3 .
- (c) Are the vectors v_1, v_2, v_3 linearly independent? (Compare with part (a) of Problem 1!) If no, then write down a non-trivial linear relation of v_1, v_2, v_3 which gives **0**.
- (d) Are the vectors v_2, v_3, v_4 linearly independent? If no, then write down a non-trivial linear relation of v_2, v_3, v_4 which gives **0**.
- (e) Using your work in (c), decide whether the following statements are true or false:

The system	$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 3 \\ 0 & 1 & 1 \end{bmatrix} \boldsymbol{x} =$	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} $ has a unique solution.	TRUE	FALSE
The system	$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 3 \\ 0 & 1 & 1 \end{bmatrix} \boldsymbol{x} =$	$\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$ is always consistent.	TRUE	FALSE
The system	$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 3 \\ 0 & 1 & 1 \end{bmatrix} \boldsymbol{x} =$	$\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$ always has a unique solution.	TRUE	FALSE
The matrix	$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 3 \\ 0 & 1 & 1 \end{bmatrix}$ is in	vertible.	TRUE	FALSE

(f) Using your work in (d), decide whether the following statements are true or false:

The system	$\begin{bmatrix} 0 & 1 \\ 1 & 3 \\ 1 & 1 \end{bmatrix}$	$2 \\ 3 \\ -1$	$\mathbf{x} =$	$\begin{bmatrix} 0\\0\\0 \end{bmatrix}$ has a unique solution.	TRUE	FALSE
The system	$\begin{bmatrix} 0 & 1 \\ 1 & 3 \\ 1 & 1 \end{bmatrix}$	$2 \\ 3 \\ -1$]x =	$\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$ is always consistent.	TRUE	FALSE
The system	$\begin{bmatrix} 0 & 1 \\ 1 & 3 \\ 1 & 1 \end{bmatrix}$	$2 \\ 3 \\ -1$	x =	$\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$ always has a unique solution.	TRUE	FALSE
The matrix		$2 \\ 3 \\ -1$] is ii	nvertible.	TRUE	FALSE

Armin Straub straub@southalabama.edu 1