Homework #4

Please print your name:

Problem 1. Consider

	1				_	$\left[\begin{array}{c}0\\2\\2\end{array}\right]$			-1 5 3]
A =	-1	2	1	$2 \mid$, b =	2	,	c =	5	.
A =	_ 1	-2	3	2		2			3	

- (a) Find (in vector form) the general solution to the linear system Ax = b.
- (b) From your answer in (a), deduce the general solution to the associated homogeneous linear system Ax = 0. [You should not have to do any computations!]
- (c) Verify that $\boldsymbol{x} = \begin{bmatrix} 0 & 1 & 1 & 1 \end{bmatrix}^T$ is a (particular) solution to the linear system $A\boldsymbol{x} = \boldsymbol{c}$. [You should not solve the system. Just multiply a matrix with a vector.]

(d) Using the information from (b) and (c), find the general solution to the linear system Ax = c. [Again, you should not have to do any computations!]

- (e) Compute $A^{T}A$. (Make sure that your answer is a symmetric 4×4 matrix.)
- (f) (Bonus) Suppose that A is any $m \times n$ matrix. Can you give a reason why $A^T A$ is always a symmetric matrix?