
Introduction to systems of linear equations

These slides are based on Section 1 in Linear Algebra and its Applications by David C. Lay.

Definition 1. A linear equation in the variables x1, ..., xn is an equation that can be
written as

a1x1+ a2x2+
 + anxn= b.

Example 2. Which of the following equations are linear?

• 4x1− 5x2+2=x1 linear: 3x1− 5x2=−2

• x2=2( 6
√

−x1)+ x3 linear: 2x1+ x2−x3=2 6
√

• 4x1− 6x2=x1x2 not linear: x1x2

• x2=2 x1

√
− 7 not linear: x1

√

Definition 3.

• A system of linear equations (or a linear system) is a collection of one or more
linear equations involving the same set of variables, say, x1, x2, ..., xn.

• A solution of a linear system is a list (s1, s2, ..., sn) of numbers that makes each
equation in the system true when the values s1, s2, ..., sn are substituted for x1, x2,

..., xn, respectively.

Example 4. (Two equations in two variables)

In each case, sketch the set of all solutions.

x1 + x2 = 1
−x1 + x2 = 0

x1 − 2x2 = −3
2x1 − 4x2 = 8

2x1 + x2 = 1
−4x1 − 2x2 = −2

-3 -2 -1 1 2 3
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Theorem 5. A linear system has either

• no solution, or

• one unique solution, or

• infinitely many solutions.

Definition 6. A system is consistent if a solution exists.
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How to solve systems of linear equations

Strategy: replace system with an equivalent system which is easier to solve

Definition 7. Linear systems are equivalent if they have the same set of solutions.

Example 8. To solve the first system from the previous example:

x1 + x2 = 1
−x1 + x2 = 0

>

R2→R2+R1 x1 + x2 = 1
2x2 = 1

Once in this triangular form, we find the solutions by back-substitution:

x2=1/2, x1=1/2

Example 9. The same approach works for more complicated systems.

x1 − 2x2 + x3 = 0
2x2 − 8x3 = 8

−4x1 + 5x2 + 9x3 = −9
,

R3→R3+ 4R1

x1 − 2x2 + x3 = 0
2x2 − 8x3 = 8

− 3x2 + 13x3 = −9
,

R3→R3+
3

2
R2

x1 − 2x2 + x3 = 0
2x2 − 8x3 = 8

x3 = 3

By back-substitution:

x3=3, x2= 16, x1= 29.

It is always a good idea to check our answer. Let us check that (29,16,3) indeed solves
the original system:

x1 − 2x2 + x3 = 0
2x2 − 8x3 = 8

−4x1 + 5x2 + 9x3 = −9

29 − 2 · 16 + 3
@

� 0

2 · 16 − 8 · 3
@

� 8

−4 · 29 + 5 · 16 + 9 · 3
@

� −9

Matrix notation

x1 − 2x2 = −1
−x1 + 3x2 = 3

[

1 −2
−1 3

]

(coefficient matrix)
[

1 −2 −1
−1 3 3

]

(augmented matrix)
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Definition 10. An elementary row operation is one of the following:

• (replacement) Add one row to a multiple of another row.

• (interchange) Interchange two rows.

• (scaling) Multiply all entries in a row by a nonzero constant.

Definition 11. Two matrices are row equivalent, if one matrix can be transformed
into the other matrix by a sequence of elementary row operations.

Theorem 12. If the augmented matrices of two linear systems are row equivalent, then
the two systems have the same solution set.

Example 13. Here is the previous example in matrix notation.

x1 − 2x2 + x3 = 0
2x2 − 8x3 = 8

−4x1 + 5x2 + 9x3 = −9





1 −2 1 0
0 2 −8 8

−4 5 9 −9





,

R3→R3+4R1

x1 − 2x2 + x3 = 0
2x2 − 8x3 = 8

− 3x2 + 13x3 = −9





1 −2 1 0
0 2 −8 8
0 −3 13 −9





,

R3→R3+
3

2
R2

x1 − 2x2 + x3 = 0
2x2 − 8x3 = 8

x3 = 3





1 −2 1 0
0 2 −8 8
0 0 1 3





Instead of back-substitution, we can continue with row operations.

After R2→R2+8R3, R1→R1−R3, we obtain:

x1 − 2x2 = −3
2x2 = 32

x3 = 3





1 −2 0 −3
0 2 0 32

0 0 1 3





Finally, R1→R1+R2, R2→
1

2
R2 results in:

x1 = 29

x2 = 16

x3 = 3





1 0 0 29

0 1 0 16

0 0 1 3





We again find the solution (x1, x2, x3)= (29, 16, 3).
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Row reduction and echelon forms

Definition 14. A matrix is in echelon form (or row echelon form) if:

(1) Each leading entry (i.e. leftmost nonzero entry) of a row is in a column to the right
of the leading entry of the row above it.

(2) All entries in a column below a leading entry are zero.

(3) All nonzero rows are above any rows of all zeros.

Example 15. Here is a representative matrix in echelon form.
















0 � ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 � ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 � ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 � ∗ ∗ ∗
0 0 0 0 0 0 0 0 � ∗ ∗
0 0 0 0 0 0 0 0 0 0 0

















(∗ stands for any value, and � for any nonzero value.)

Example 16. Are the following matrices in echelon form?

(a)









� ∗ ∗ ∗ ∗
0 � ∗ ∗ ∗
0 0 0 0 0
0 0 0 0 0









YES

(b)









0 � ∗ ∗ ∗
� ∗ ∗ ∗ ∗
0 0 0 0 0
0 0 0 0 0









NOPE (but it is after exchanging the first two rows)

(c)









� ∗ ∗
0 � ∗
0 0 �

0 0 0









YES

(d)









� 0 0
∗ � 0
∗ 0 �

∗ 0 0









NO

Related and extra material

• In our textbook: parts of 1.1, 1.3, 2.2 (just pages 78 and 79)

However, I would suggest waiting a bit before reading through these parts (say, until we covered
things like matrix multiplication in class).

• Suggested practice exercise: 1, 4, 5, 10, 11 from Section 1.3
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Pre-lecture trivia

Who are these four?

• Artur Avila, Manjul Bhargava, Martin Hairer, Maryam Mirzakhani

• Just won the Fields Medal!

◦ analog to Nobel prize in mathematics

◦ awarded every four years

◦ winners have to be younger than 40

◦ cash prize: 15,000 C$
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Review

• Each linear system corresponds to an augmented matrix.

2x1 −x2 = 6

−x1 +2x2 −x3 = −9

−x2 +2x3 = 12





2 −1 6

−1 2 −1 −9

−1 2 12





augmented matrix

• To solve a system, we perform row reduction.

>

R2→R2+
1

2
R1







2 −1 0 6

0
3

2
−1 −6

0 −1 2 12







>

R3→R3+
2

3
R2









2 −1 0 6

0
3

2
−1 −6

0 0
4

3
8









echelon form!

• Echelon form in general:

















0 � ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 � ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 0 � ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 � ∗ ∗ ∗

0 0 0 0 0 0 0 0 � ∗ ∗

0 0 0 0 0 0 0 0 0 0 0

















The leading terms in each row are the pivots.
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Row reduction and echelon forms, continued

Definition 1. A matrix is in reduced echelon form if, in addition to being in echelon
form, it also satisfies:

• Each pivot is 1.

• Each pivot is the only nonzero entry in its column.

Example 2. Our initial matrix in echelon form put into reduced echelon form:
















0 � ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 � ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 0 � ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 � ∗ ∗ ∗

0 0 0 0 0 0 0 0 � ∗ ∗

0 0 0 0 0 0 0 0 0 0 0

















 

















0 � ∗ 0 0 ∗ ∗ 0 0 ∗ ∗

0 0 0 � 0 ∗ ∗ 0 0 ∗ ∗

0 0 0 0 � ∗ ∗ 0 0 ∗ ∗

0 0 0 0 0 0 0 � 0 ∗ ∗

0 0 0 0 0 0 0 0 � ∗ ∗

0 0 0 0 0 0 0 0 0 0 0

















Note that, to be in reduced echelon form, the pivots � also have to be scaled to 1.

Example 3. Are the following matrices in reduced echelon form?

(a)













0 1 ∗ 0 0 ∗ ∗ 0 0 ∗ ∗

0 0 0 1 0 ∗ ∗ 0 0 ∗ ∗

0 0 0 0 1 ∗ ∗ 0 0 ∗ ∗

0 0 0 0 0 0 0 1 0 ∗ ∗

0 0 0 0 0 0 0 0 1 ∗ ∗













YES

(b)









1 0 5 0 −7

0 2 4 0 −6

0 0 0 −5 0

0 0 0 0 0









NO

(c)





1 0 −2 3 2 −24

0 1 −2 2 0 −7

0 0 0 0 1 4



 NO

Theorem 4. (Uniqueness of the reduced echelon form) Each matrix is row equiv-
alent to one and only one reduced echelon matrix.

Question. Is the same statement true for the echelon form?

Clearly not; for instance,

[

1 2

0 1

]

 

[

1 0

0 1

]

are different row equivalent echelon forms.
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Example 5. Row reduce to echelon form (often called Gaussian elimination) and then
to reduced echelon form (often called Gauss–Jordan elimination):





0 3 −6 6 4 −5

3 −7 8 −5 8 9

3 −9 12 −9 6 15





Solution.

After R1↔R3, we get: (R1↔R2 would be another option; try it!)





3 −9 12 −9 6 15

3 −7 8 −5 8 9

0 3 −6 6 4 −5





Then, R2→R2−R1 yields:





3 −9 12 −9 6 15

0 2 −4 4 2 −6

0 3 −6 6 4 −5





Finally, R3→R3−
3

2
R2 produces the echelon form:





3 −9 12 −9 6 15

0 2 −4 4 2 −6

0 0 0 0 1 4





To get the reduced echelon form, we first scale all rows:





1 −3 4 −3 2 5

0 1 −2 2 1 −3

0 0 0 0 1 4





Then, R2→R2−R3 and R1→R1− 2R3, gives:





1 −3 4 −3 0 −3

0 1 −2 2 0 −7

0 0 0 0 1 4





Finally, R1→R1+3R2 produces the reduced echelon form:





1 0 −2 3 0 −24

0 1 −2 2 0 −7

0 0 0 0 1 4




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Solution of linear systems via row reduction

After row reduction to echelon form, we can easily solve a linear system.
(especially after reduction to reduced echelon form)

Example 6.




1 6 0 3 0 0

0 0 1 −8 0 5

0 0 0 0 1 7



  

x1 +6x2 +3x4 = 0

x3 −8x4 = 5

x5 = 7

• The pivots are located in columns 1,3, 5. The corresponding variables x1, x3, x5 are
called pivot variables (or basic variables).

• The remaining variables x2, x4 are called free variables.

• We can solve each equation for the pivot variables in terms of the free variables (if
any). Here, we get:

x1 +6x2 +3x4 = 0

x3 −8x4 = 5

x5 = 7























x1=−6x2− 3x4

x2 free
x3=5+8x4

x4 free
x5=7

• This is the general solution of this system. The solution is in parametric form, with
parameters given by the free variables.

• Just to make sure: Is the above system consistent? Does it have a unique solution?

Example 7. Find a parametric description of the solution set of:

3x2 −6x3 +6x4 +4x5 = −5

3x1 −7x2 +8x3 −5x4 +8x5 = 9

3x1 −9x2 +12x3 −9x4 +6x5 = 15

Solution. The augmented matrix is





0 3 −6 6 4 −5

3 −7 8 −5 8 9

3 −9 12 −9 6 15



.

We determined earlier that its reduced echelon form is





1 0 −2 3 0 −24

0 1 −2 2 0 −7

0 0 0 0 1 4



.
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The pivot variables are x1, x2, x5.

The free variables are x3, x4.

Hence, we find the general solution as:























x1=−24+2x3− 3x4

x2=−7+2x3− 2x4

x3 free
x4 free
x5=4

Related and extra material

• In our textbook: still, parts of 1.1, 1.3, 2.2 (just pages 78 and 79)

As before, I would suggest waiting a bit before reading through these parts (say, until we covered
things like matrix multiplication in class).

• Suggested practice exercise:

Section 1.3: 13, 20; Section 2.2: 2 (only reduce A,B to echelon form)
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Review

• We have a standardized recipe to find all solutions of systems such as:

3x2 −6x3 +6x4 +4x5 = −5
3x1 −7x2 +8x3 −5x4 +8x5 = 9
3x1 −9x2 +12x3 −9x4 +6x5 = 15

• The computational part is to start with the augmented matrix





0 3 −6 6 4 −5
3 −7 8 −5 8 9
3 −9 12 −9 6 15



,

and to calculate its reduced echelon form (which is unique!). Here:





1 0 −2 3 0 −24

0 1 −2 2 0 −7
0 0 0 0 1 4



.

• pivot variables (or basic variables): x1, x2, x5

free variables: x3, x4

• solving each equation for the pivot variables in terms of the free variables:

x1 −2x3 +3x4 = −24

x2 −2x3 +2x4 = −7
x5 = 4























x1=−24+2x3− 3x4

x2=−7+2x3− 2x4

x3 free
x4 free
x5=4
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Questions of existence and uniqueness

The question whether a system has a solution and whether it is unique, is easier to
answer than to determine the solution set.

All we need is an echelon form of the augmented matrix.

Example 1. Is the following system consistent? If so, does it have a unique solution?

3x2 −6x3 +6x4 +4x5 = −5
3x1 −7x2 +8x3 −5x4 +8x5 = 9
3x1 −9x2 +12x3 −9x4 +6x5 = 15

Solution. In the course of an earlier example, we obtained the echelon form:





3 −9 12 −9 6 15

0 2 −4 4 2 −6
0 0 0 0 1 4





Hence, it is consistent (imagine doing back-substitution to get a solution).

Theorem 2. (Existence and uniqueness theorem) A linear system is consistent if
and only if an echelon form of the augmented matrix has no row of the form

[ 0 ... 0 b ],

where b is nonzero.

If a linear system is consistent, then the solutions consist of either

• a unique solution (when there are no free variables) or

• infinitely many solutions (when there is at least one free variable).

Example 3. For what values of h will the following system be consistent?

3x1 −9x2 = 4
−2x1 +6x2 = h

Solution. We perform row reduction to find an echelon form:
[

3 −9 4
−2 6 h

]

>

R2→R2+
2

3
R1

[

3 −9 4

0 0 h+
8

3

]

The system is consistent if and only if h=−
8

3
.
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Brief summary of what we learned so far

• Each linear system corresponds to an augmented matrix.

• Using Gaussian elimination (i.e. row reduction to echelon form) on the augmented
matrix of a linear system, we can

◦ read off, whether the system has no, one, or infinitely many solutions;

◦ find all solutions by back-substitution.

• We can continue row reduction to the reduced echelon form.

◦ Solutions to the linear system can now be just read off.

◦ This form is unique!

Note. Besides for solving linear systems, Gaussian elimination has other important uses,
such as computing determinants or inverses of matrices.

A recipe to solve linear systems (Gauss–Jordan elimination)

(1) Write the augmented matrix of the system.

(2) Row reduce to obtain an equivalent augmented matrix in echelon form.
Decide whether the system is consistent. If not, stop; otherwise go to the next step.

(3) Continue row reduction to obtain the reduced echelon form.

(4) Express this final matrix as a system of equations.

(5) Declare the free variables and state the solution in terms of these.

Questions to check our understanding

• On an exam, you are asked to find all solutions to a system of linear equations. You
find exactly two solutions. Should you be worried?

Yes, because if there is more than one solution, there have to be infinitely many solutions. Can
you see how, given two solutions, one can construct infinitely many more?

• True or false?

◦ There is no more than one pivot in any row.

True, because a pivot is the first nonzero entry in a row.

◦ There is no more than one pivot in any column.

True, because in echelon form (that’s where pivots are defined) the entries below a pivot
have to zero.

◦ There cannot be more free variables than pivot variables.

False, consider, for instance, the augmented matrix [ 1 7 5 3 ].
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The geometry of linear equations

Adding and scaling vectors

Example 4. We have already encountered matrices such as





1 4 2 3
2 −1 2 2
3 2 −2 0



.

Each column is what we call a (column) vector.
In this example, each column vector has 3 entries and so lies in R

3.

Example 5. A fundamental property of vectors is that vectors of the same kind can be
added and scaled.





1
2
3



+





4
−1
2



=





5
1
5



, 7 ·





x1

x2

x3



=





7x1

7x2

7x3



.

Example 6. (Geometric description of R
2) A vector

[

x1

x2

]

represents the point

(x1, x2) in the plane.

Given x=
[

1

3

]

and y=
[

2

1

]

, graph x, y, x+ y, 2y.

0 1 2 3 4
0

1

2

3

4

0 1 2 3 4
0

1

2

3

4
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Adding and scaling vectors, the most general thing we can do is:

Definition 7. Given vectors v1,v2,
 , vm in R
n and scalars c1, c2,
 , cm, the vector

c1v1+ c2v2+
 + cmvm

is a linear combination of v1,v2,
 ,vm.

The scalars c1,
 , cm are the coefficients or weights.

Example 8. Linear combinations of v1,v2,v3 include:

• 3v1−v2+7v3,

• v2+v3,

•
1

3
v2,

• 0.

Example 9. Express
[

1

5

]

as a linear combination of
[

2

1

]

and
[

−1

1

]

.

Solution. We have to find c1 and c2 such that

c1

[

2
1

]

+ c2

[

−1
1

]

=

[

1
5

]

.

This is the same as:

2c1 −c2 = 1
c1 +c2 = 5

Solving, we find c1=2 and c2=3.

Indeed,

2

[

2
1

]

+3

[

−1
1

]

=

[

1
5

]

.

Note that the augmented matrix of the linear system is

[

2 −1 1
1 1 5

]

,

and that this example provides a new way of think about this system.
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The row and column picture

Example 10. We can think of the linear system

2x− y = 1

x+ y = 5

in two different geometric ways.

Row picture.
Each equation defines a line in R

2.

Which points lie on the intersection of these lines?

Column picture.
The system can be written as x

[

2

1

]

+ y
[

−1

1

]

=
[

1

5

]

.

Which linear combinations of
[

2

1

]

and
[

−1

1

]

produce
[

1

5

]

?

This example has the unique solution x=2, y=3.

• (2, 3) is the (only) intersection of the two lines 2x− y=1 and x+ y=5.

• 2
[

2
1

]

+3
[

−1
1

]

is the (only) linear combination producing
[

1
5

]

.
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Pre-lecture: the shocking state of our ignorance

Q: How fast can we solve N linear equations in N unknowns?

Estimated cost of Gaussian elimination:








� ∗ ∗ � ∗
0 ∗ ∗ � ∗

 
 


0 ∗ ∗ � ∗









• to create the zeros below the pivot:

� on the order of N2 operations

• if there is N pivots:

� on the order of N ·N2=N3 op’s

• A more careful count places the cost at ∼
1

3
N3 op’s.

• For large N , it is only the N3 that matters.

It says that if N → 10N then we have to work 1000 times as hard.

That’s not optimal! We can do better than Gaussian elim ination:

• Strassen algorithm (1969): N log27=N2 .807

• Coppersmith–Winograd algorithm (1990): N 2.375

• 
 Stothers–Williams–Le Gall (2014): N 2.373

Is N2 possible? We have no idea! (better is impossib le; why?)

Good news for applications: (w ill see an example soon)

• Matrices typically have lots of structure and zeros

which makes solving so much faster.
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Organizational

• Help sessions in 441 AH: MW 4-6pm, TR 5-7pm

Review

• A system such as

2x− y = 1

x+ y = 5

can be written in vector form as

x

[

2
1

]

+ y

[

−1
1

]

=

[

1
5

]

.

• The left-hand side is a linear combination of the vectors
[

2

1

]

and
[

−1

1

]

.

The row and column picture

Example 1. We can think of the linear system

2x− y = 1

x+ y = 5

in two different geometric ways. Here, there is a unique solution: x=2, y=3.

Row picture.

• Each equation defines a line in R
2.

• Which points lie on the intersection
of these lines?

• (2, 3) is the (only) intersection of
the two lines 2x − y = 1 and x +
y=5.

1 2 3 4 5

1

2

3

4

5
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Column picture.

• The system can be written as

x

[

2

1

]

+ y

[

−1

1

]

=

[

1

5

]

.

• Which linear combinations of
[

2

1

]

and
[

−1

1

]

produce
[

1

5

]

?

• (2, 3) are the coefficients of the
(only) such linear combination.

-3 -2 -1 0 1 2 3 4

1

2

3

4

5

Example 2. Consider the vectors

a1=





1
0
3



, a2=





4
2
14



, a3=





3
6
10



, b=





−1
8
−5



.

Determine if b is a linear combination of a1,a2,a3.

Solution. Vector b is a linear combination of a1,a2,a3 if we can find weights x1, x2,

x3 such that:

x1





1
0
3



+x2





4
2
14



+x3





3
6
10



=





−1
8
−5





This vector equation corresponds to the linear system:

x1 +4x2 +3x3 = −1
+2x2 +6x3 = 8

3x1 +14x2 +10x3 = −5

Corresponding augmented matrix:





1 4 3 −1
0 2 6 8
3 14 10 −5





Note that we are looking for a linear combination of the first three columns which
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produces the last column.

Such a combination exists� the system is consistent.

Row reduction to echelon form:





1 4 3 −1
0 2 6 8
3 14 10 −5



 





1 4 3 −1
0 2 6 8
0 2 1 −2



 





1 4 3 −1
0 2 6 8
0 0 −5 −10





Since this system is consistent, b is a linear combination of a1,a2,a3.

[It is consistent, because there is no row of the form [ 0 0 0 b ] with b� 0.]

Example 3. In the previous example, express b as a linear combination of a1,a2,a3.

Solution. The reduced echelon form is:





1 4 3 −1

0 2 6 8

0 0 −5 −10





 





1 4 3 −1

0 1 3 4

0 0 1 2





 





1 4 0 −7

0 1 0 −2

0 0 1 2





 





1 0 0 1

0 1 0 −2

0 0 1 2





We read off the solution x1=1, x2=−2, x3=2, which yields





1
0
3



− 2





4
2
14



+2





3
6
10



=





−1
8
−5



.

Summary

A vector equation

x1a1+x2a2+
 +xmam= b

has the same solution set as the linear system with augmented matrix





| | | |
a1 a2 � am b

| | | |



.

In particular, b can be generated by a linear combination of a1, a2,
 , am if and only
if this linear system is consistent.
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The span of a set of vectors

Definition 4. The span of vectors v1, v2,
 , vm is the set of all their linear combina-
tions. We denote it by span{v1, v2,
 ,vm}.

In other words, span{v1,v2,
 ,vm} is the set of all vectors of the form

c1v1+ c2v2+
 + cmvm,

where c1, c2,
 , cm are scalars.

Example 5.

(a) Describe span
{

[

2

1

]

}

geometrically.

The span consists of all vectors of the form α ·
[

2

1

]

.

As points in R
2, this is a line.

(b) Describe span
{

[

2

1

]

,
[

4

1

]

}

geometrically.

The span is all of R2, a plane.

That’s because any vector in R
2 can

be written as x1

[

2

1

]

+x2

[

4

1

]

.

-2 -1 1 2 3 4

-1.0

-0.5

0.5

1.0

1.5

2.0

Let’s show this without relying on our geometric intuition: let
[

b1

b2

]

any vector.

[

2 4 b1
1 1 b2

]

 

[

2 4 b1

0 −1 b2−
1

2
b1

]

is consistent

Hence,
[

b1

b2

]

is a linear combination of
[

2
1

]

and
[

4
1

]

.

(c) Describe span
{

[

2

1

]

,
[

4

2

]

}

geometrically.

Note that
[

4

2

]

=2 ·
[

2

1

]

. Hence, the span is as in (a).

Again, we can also see this after row reduction: let
[

b1

b2

]

any vector.

[

2 4 b1
1 2 b2

]

 

[

2 4 b1

0 0 b2−
1

2
b1

]

is not consistent for all
[

b1

b2

]

[

b1

b2

]

is in the span of
[

2
1

]

and
[

4
2

]

only if b2−
1

2
b1=0 (i.e. b2=

1

2
b1).

So the span consists of vectors

[

b1

1

2
b1

]

= b1

[

1
1

2

]

.

Armin Straub
astraub@illinois.edu

5



A single (nonzero) vector always spans a line, two vectors v1, v2 usually span a plane
but it could also be just a line (if v2=αv1).

We will come back to this when we discuss dimension and linear independence.

Example 6. Is span

{





2

−1

1



,





4

−2

1





}

a line or a plane?

Solution. The span is a plane unless, for some α,





4
−2
1



=α ·





2
−1
1



.

Looking at the first entry, α = 2, but that does not work for the third entry. Hence,
there is no such α. The span is a plane.

Example 7. Consider

A=





1 2
3 1
0 5



, b=





8
3
17



.

Is b in the plane spanned by the columns of A?

Solution. b in the plane spanned by the columns of A if and only if





1 2 8
3 1 3
0 5 17





is consistent.

To find out, we row reduce to an echelon form:





1 2 8
3 1 3
0 5 17



 





1 2 8
0 −5 −21

0 5 17



 





1 2 8
0 −5 −21

0 0 −4





From the last row, we see that the system is inconsistent. Hence, b is not in the plane
spanned by the columns of A.
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Conclusion and summary

• The span of vectors a1,a2,
 ,am is the set of all their linear combinations.

• Some vector b is in span{a1, a2, 
 , am} if and only if there is a solution to the
linear system with augmented matrix





| | | |
a1 a2 � am b

| | | |



.

◦ Each solution corresponds to the weights in a linear combination of the a1,a2,
 ,

am which gives b.

◦ This gives a second geometric way to think of linear systems!
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Pre-lecture: the goal for today

We wish to write linear systems simply as Ax= b.

For instance:

2x1 +3x2 = b1
3x1 +x2 = b2

�

[

2 3
3 1

]

·

[

x1

x2

]

=

[

b1
b2

]

Why?

• It’s concise.

• The compactness also sparks associations and ideas!

◦ For instance, can we solve by dividing by A? x=A−1b?

◦ If Ax= b and Ay=0, then A(x+ y) = b.

• Leads to matrix calculus and deeper understanding.

◦ multiplying, inverting, or factoring matrices

Matrix operations

Basic notation

We will use the following notations for an m×n matrix A (m rows, n columns).

• In terms of the columns of A:

A= [ a1 a2 � an ] =





| | |
a1 a2 � an

| | |





• In terms of the entries of A:

A=











a1,1 a1,2 � a1,n
a2,1 a2,2 � a2,n

 


am,1 am,2 � am,n











, ai,j=
entry in
i-th row,

j-th column

Matrices, just like vectors, are added and scaled componentwise.

Example 1.

(a)

[

1 0
5 2

]

+

[

2 3
3 1

]

=

[

3 3
8 3

]
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(b) 7 ·

[

2 3
3 1

]

=

[

14 21

21 7

]

Matrix times vector

Recall that (x1, x2,
 , xn) solves the linear system with augmented matrix

[ A b ] =





| | | |
a1 a2 � an b

| | | |





if and only if

x1a1+ x2a2+
 +xnan= b.

It is therefore natural to define the product of matrix times vector as

Ax=x1a1+x2a2+
 +xnan, x=





x1




xn



.

The system of linear equations with augmented matrix [ A b ] can be written in
matrix form compactly as Ax= b.

The product of a matrix A with a vector x is a linear combination of the columns of
A with weights given by the entries of x.

Example 2.

(a)

[

1 0
5 2

]

·

[

2
1

]

=2

[

1
5

]

+1

[

0
2

]

=

[

2
12

]

(b)

[

2 3
3 1

]

·

[

0
1

]

=

[

3
1

]

(c)

[

2 3
3 1

]

·

[

x1

x2

]

=x1

[

2
3

]

+ x2

[

3
1

]

=

[

2x1+3x2

3x1+ x2

]

This illustrates that linear systems can be simply expressed as Ax= b:

2x1 +3x2 = b1
3x1 +x2 = b2

�

[

2 3
3 1

]

·

[

x1

x2

]

=

[

b1
b2

]

(d)





2 3
3 1
1 −1



·

[

1
1

]

=





5
4
0




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Example 3. Suppose A is m×n and x is in R
p. Under which condition does Ax make

sense?

We need n= p. (Go through the definition of Ax to make sure you see why!)

Matrix times matrix

If B has just one column b, i.e. B= [ b ], then AB= [ Ab ].

In general, the product of matrix times matrix is given by

AB= [ Ab1 Ab2 � Abp ], B= [ b1 b2 � bp ].

Example 4.

(a)

[

1 0
5 2

]

·

[

2 −3
1 2

]

=

[

2 −3
12 −11

]

because

[

1 0
5 2

]

·

[

2
1

]

=2

[

1
5

]

+1

[

0
2

]

=

[

2
12

]

and

[

1 0
5 2

]

·

[

−3
2

]

=−3

[

1
5

]

+2

[

0
2

]

=

[

−3
−11

]

.

(b)

[

1 0
5 2

]

·

[

2 −3 1
1 2 0

]

=

[

2 −3 1
12 −11 5

]

Each column of AB is a linear combination of the columns of A with weights given
by the corresponding column of B.

Remark 5. The definition of the matrix product is inevitable from the multiplication of
matrix times vector and the fact that we want AB to be defined such that (AB)x=
A(Bx).

A(Bx) =A(x1b1+x2b2+� )

= x1Ab1+ x2Ab2+�

= (AB)x if the columns of AB are Ab1, Ab2,


Example 6. Suppose A is m×n and B is p× q.

(a) Under which condition does AB make sense?

We need n= p. (Go through the boxed characterization of AB to make sure you see why!)

(b) What are the dimensions of AB in that case?

AB is a m× q matrix.
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Basic properties

Example 7.

(a)

[

2 3
3 1

]

·

[

1 0
0 1

]

=

[

2 3
3 1

]

(b)

[

1 0
0 1

]

·

[

2 3
3 1

]

=

[

2 3
3 1

]

This is the 2× 2 identity matrix.

Theorem 8. Let A,B,C be matrices of appropriate size. Then:

• A(BC)= (AB)C associative

• A(B+C)=AB+AC left-distributive

• (A+B)C =AC +BC right-distributive

Example 9. However, matrix multiplication is not commutative!

(a)

[

2 3
3 1

]

·

[

1 1
0 1

]

=

[

2 5
3 4

]

(b)

[

1 1
0 1

]

·

[

2 3
3 1

]

=

[

5 4
3 1

]

Example 10. Also, a product can be zero even though none of the factors is:
[

2 0
3 0

]

·

[

0 0
2 1

]

=

[

0 0
0 0

]

Transpose of a matrix

Definition 11. The transpose AT of a matrix A is the matrix whose columns are
formed from the corresponding rows of A. rows ↔ columns

Example 12.

(a)





2 0
3 1
−1 4





T

=

[

2 3 −1
0 1 4

]

(b) [ x1 x2 x3 ]T =





x1

x2

x3





(c)

[

2 3
3 1

]

T

=

[

2 3
3 1

]

A matrix A is called symmetric if A=AT .
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Practice problems

• True or false?

◦ AB has as many columns as B.

◦ AB has as many rows as B.

The following practice problem illustrates the rule (AB)T =BTAT .

Example 13. Consider the matrices

A=





1 2
0 1
−2 4



, B=

[

1 2
3 0

]

.

Compute:

(a) AB=





1 2
0 1
−2 4





[

1 2
3 0

]

=

(b) (AB)T =

[ ]

(c) BTAT =

[

1 3
2 0

][

1 0 −2
2 1 4

]

=

(d) ATBT =

[

1 0 −2
2 1 4

][

1 3
2 0

]

= What’s that fishy smell?
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Review: matrix multiplication

• Ax is a linear combination of the columns of A with weights given by the entries
of x.

[

2 3
3 1

]

·

[

2
1

]

=2

[

2
3

]

+1

[

3
1

]

=

[

7
7

]

• Ax= b is the matrix form of the linear system with augmented matrix [ A b ].

[

2 3
3 1

]

·

[

x1

x2

]

=

[

b1
b2

]

�

2x1 +3x2 = b1
3x1 +x2 = b2

• Each column of AB is a linear combination of the columns of A with weights given
by the corresponding column of B.

[

2 3
3 1

]

·

[

2 1
1 0

]

=

[

7 2
7 3

]

• Matrix multiplication is not commutative: usually, AB � BA.

A comment on lecture notes

My personal suggestion:

• before lecture: have a quick look (15min or so) at the pre-lecture notes to see where
things are going

• during lecture: take a minimal amount of notes (everything on the screens will be
in the post-lecture notes) and focus on the ideas

• after lecture: go through the pre-lecture notes again and fill in all the blanks by
yourself

• then compare with the post-lecture notes

Since I am writing the pre-lecture notes a week ahead of time, there is usually some minor
differences to the post-lecture notes.
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Transpose of a matrix

Definition 1. The transpose AT of a matrix A is the matrix whose columns are formed
from the corresponding rows of A. rows ↔ columns

Example 2.

(a)





2 0
3 1
−1 4





T

=

[

2 3 −1
0 1 4

]

(b) [ x1 x2 x3 ]T =





x1

x2

x3





(c)

[

2 3
3 1

]

T

=

[

2 3
3 1

]

A matrix A is called symmetric if A=AT .

Theorem 3. Let A,B be matrices of appropriate size. Then:

• (AT)T =A

• (A+B)T =AT +BT

• (AB)T =BTAT
(illustrated by last practice problem s)

Example 4. Deduce that (ABC)T =CTBTAT .

Solution. (ABC)T = ((AB)C)T =CT(AB)T =CTBTAT
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Back to matrix multiplication

Review. Each column of AB is a linear combination of the columns of A with weights
given by the corresponding column of B.

Two more ways to look at matrix multiplication

Example 5. What is the entry (AB)i,j at row i and column j?

The j-th column of AB is the vector A · (col j of B).

Entry i of that is (row i of A) · (col j of B). In other words:

(AB)i,j=(row i of A) · (col j of B)

Use this row-column rule to compute:
[

2 3 6
−1 0 1

]

·





2 −3
0 1
2 0



=

[

16 −3
0 3

]





2 −3
0 1
2 0





[

2 3 6
−1 0 1

][

16 −3
0 3

]

[Can you see the rule (AB)T =BTAT from here?]

Observe the symmetry between rows and columns in this rule!

It follows that the interpretation

“Each column of AB is a linear combination of the columns of A with
weights given by the corresponding column of B.”

has the counterpart

“Each row of AB is a linear combination of the rows of B with weights given
by the corresponding row of A.”

Example 6.

(a)

[

−1 0 0
0 0 1

]

·





1 2 3
4 5 6
7 8 9



=

[

−1 −2 −3
7 8 9

]
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LU decomposition

Elementary matrices

Example 7.

(a)

[

1 0
0 1

][

a b

c d

]

=

[

a b

c d

]

(b)

[

0 1
1 0

][

a b

c d

]

=

[

c d

a b

]

(c)





1 0 0
0 2 0
0 0 1









a b c

d e f

g h i



=





a b c

2d 2e 2f
g h i





(d)





1 0 0
0 1 0
3 0 1









a b c

d e f

g h i



=





a b c

d e f

3a+ g 3b+h 3c+ i





Definition 8. An elementary matrix is one that is obtained by performing a single
elementary row operation on an identity matrix.

The result of an elementary row operation on A is EA

where E is an elementary matrix (namely, the one obtained by performing the same row operation
on the appropriate identity matrix).

Example 9.

(a)





1 0 0
0 1 0
−3 0 1









1 0 0
0 1 0
3 0 1



=





1
1

1





We write





1 0 0
0 1 0
3 0 1





−1

=





1 0 0
0 1 0
−3 0 1



, but more on inverses soon.

Elementary matrices are invertible because elementary row operations are reversible.

(b)





1 0 0
2 1 0
0 0 1





−1

=





1 0 0
−2 1 0
0 0 1





(c)





1 0 0
0 2 0
0 0 1





−1

=







1
1

2

1







(d)





1 0 0
0 0 1
0 1 0





−1

=





1 0 0
0 0 1
0 1 0




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Practice problems

Example 10. Choose either column or row interpretation to “see” the result of the
following products.

(a)





1 2 0
2 1 2
0 2 1





·





1 0 0
0 1 0
0 −1 1



=

(b)





1 0 0
0 1 0
0 −1 1





·





1 2 0
2 1 2
0 2 1



=

Armin Straub
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Review

Example 1. Elementary matrices in action:

(a)





0 0 1
0 1 0
1 0 0









a b c

d e f

g h i



=





g h i

d e f

a b c





(b)





1 0 0
0 1 0
0 0 7









a b c

d e f

g h i



=





a b c

d e f

7g 7h 7i





(c)





1 0 0
0 1 0
3 0 1









a b c

d e f

g h i



=





a b c

d e f

3a+ g 3b+h 3c+ i





(d)





a b c

d e f

g h i









1 0 0
0 1 0
3 0 1



=





a+3c b c

d+3f e f

g+3i h i





(e)





1 0 0
2 1 0
0 0 1





−1

=





1 0 0
−2 1 0
0 0 1




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LU decomposition, continued

Gaussian elimination revisited

Example 2. Keeping track of the elementary matrices during Gaussian elimination onA:

A=

[

2 1
4 −6

]

R2→R2− 2R1

EA=

[

1 0
−2 1

][

2 1
4 −6

]

=

[

2 1
0 −8

]

Note that:

A=E−1

[

2 1
0 −8

]

=

[

1 0
2 1

][

2 1
0 −8

]

We factored A as the product of a lower and upper triangular matrix!

We say that A has triangular factorization.

A=LU is known as the LU decomposition of A.

L is lower triangular, U is upper triangular.

Definition 3.

lower triangular












∗ 0 0 0 0

 � 0 0 0
∗ � ∗ 0 0
∗ ∗ � ∗ 0
∗ ∗ ∗ � ∗













upper triangular












∗ ∗ ∗ � ∗

∗ ∗ � ∗

∗ � ∗

� 


∗













missing entries are 0
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Example 4. Factor A=





2 1 1
4 −6 0
−2 7 2



 as A=LU .

Solution. We begin with R2→R2− 2R1 followed by R3→R3+R1:

E1A=





1 0 0
−2 1 0
0 0 1









2 1 1
4 −6 0
−2 7 2





E2(E1A) =





1 0 0
0 1 0
1 0 1









2 1 1
0 −8 −2
−2 7 2





E3E2E1A=





1 0 0
0 1 0
0 1 1









2 1 1
0 −8 −2
0 8 3



 =





2 1 1
0 −8 −2
0 0 1





=U

The factor L is given by: note that E
3
E

2
E

1
A=U � A=E

1

−1
E

2

−1
E

3

−1
U

L =E1

−1E2

−1E3

−1

=





1
2 1

1









1
1

−1 1









1
1
−1 1





=





1
2 1

1









1
1

−1 −1 1





=





1
2 1
−1 −1 1





In conclusion, we found the following LU decomposition of A:





2 1 1
4 −6 0
−2 7 2



=





1
2 1
−1 −1 1









2 1 1
−8 −2

1





Note: The extra steps to compute L were unnecessary! The entries in L are precisely
the negatives of the ones in the elementary matrices during elimination. Can you see it?
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Once we have A=LU , it is simple to solve Ax= b.

Ax= b

� L(Ux)= b

� Lc= b and Ux= c

Both of the final systems are triangular and hence easily solved:

• Lc= b by forward substitution to find c, and then

• Ux= c by backward substitution to find x.

Important practical point: can be quickly repeated for many different b.

Example 5. Solve





2 1 1
4 −6 0
−2 7 2



x=





4
10

−3



.

Solution. We already found the LU decomposition A=LU :





2 1 1
4 −6 0
−2 7 2



=





1
2 1
−1 −1 1









2 1 1
−8 −2

1





Forward substitution to solve Lc= b for c:





1
2 1
−1 −1 1



c=





4
10

−3





� c=





4
2
3





Backward substitution to solve Ux= c for x:





2 1 1
−8 −2

1



x=





4
2
3





� x=





1
−1
3





It’s always a good idea to do a quick check:





2 1 1
4 −6 0
−2 7 2



x=





4
10

−3




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Triangular factors for any matrix

Can we factor any matrix A as A=LU?

Yes, almost! Think about the process of Gaussian elimination.

• In each step, we use a pivot to produce zeros below it.
The corresponding elementary matrices are lower diagonal!

• The only other thing we might have to do, is a row exchange.
Namely, if we run into a zero in the position of the pivot.

• All of these row exchanges can be done at the beginning!

Definition 6. A permutation matrix is one that is obtained by performing row
exchanges on an identity matrix.

Example 7. E=





1 0 0
0 0 1
0 1 0



 is a permutation matrix.

EA is the matrix obtained from A by permuting the last two rows.

Theorem 8. For any matrix A there is a permutation matrix P such that PA=LU .

In other words, it might not be possible to write A as A=LU , but we only need to permute the
rows of A and the resulting matrix PA now has an LU decomposition: PA=LU .
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Practice problems

• Is

[

2 0
0 1

]

upper triangular? Lower triangular?

• Is

[

0 1
1 0

]

upper triangular? Lower triangular?

• True or false?

◦ A permutation matrix is one that is obtained by performing column exchanges
on an identity matrix.

• Why do we care about LU decomposition if we already have Gaussian elimination?

Example 9. Solve





2 1 1

4 −6 0

−2 7 2



x=





5

−2

9



 using the factorization we already have.

Example 10. The matrix

A=





0 0 1
1 1 0
2 1 0





cannot be written as A=LU (so it doesn’t have a LU decomposition). But there is a
permutation matrix P such that PA has a LU decomposition.

Namely, let P =





0 1 0
0 0 1
1 0 0



. Then PA=





1 1 0
2 1 0
0 0 1



.

PA can now be factored as PA=LU . Do it!!

(By the way, P =





0 0 1

0 1 0

1 0 0



 would work as well.)
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Review

• Elementary matrices performing row operations:





1 0 0
−2 1 0
0 0 1









a b c

d e f

g h i



=





a b c

d− 2a e− 2b f − 2c
g h i





• Gaussian elimination on A gives an LU decomposition A=LU :





2 1 1
4 −6 0
−2 7 2



=





1
2 1
−1 −1 1









2 1 1
−8 −2

1





U is the echelon form, and L records the inverse row operations we did.

• LU decomposition allows us to solve Ax= b for many b.

•





1 0 0
a 1 0
0 0 1





−1

=





1 0 0
−a 1 0
0 0 1





• Already not so clear:





1 0 0
a 1 0
0 b 1





−1

=





1 0 0
−a 1 0
ab −b 1





Goal for today: invert these and any other matrices (if possible)
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The inverse of a matrix

Example 1. The inverse of a real number a is denoted as a−1. For instance, 7−1=
1

7
and

7 · 7−1=7−1
· 7=1.

In the context of n×n matrix multiplication, the role of 1 is taken by the n×n identity
matrix

In=









1
1
�

1









.

Definition 2. An n×n matrix A is invertible if there is a matrix B such that

AB=BA= In.

In that case, B is the inverse of A and we write A−1=B.

Example 3. We already saw that elementary matrices are invertible.

•





1 0 0
2 1 0
0 0 1





−1

=





1
−2 1

1




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Note.

• The inverse of a matrix is unique. Why? So A−1 is well-defined.

Assume B and C are both inverses of A. Then:

C =CIn=CAB= InB=B

• Do not write
A

B
. Why?

Because it is unclear whether it should mean AB−1 or B−1A.

• If AB= I, then BA= I (and so A−1=B). Not easy to show at this stage.

Example 4. The matrix A=
[

0 1

0 0

]

is not invertible. Why?

Solution.
[

0 1
0 0

][

a b

c d

]

=

[

c d

0 0

]

�

[

1
1

]

Example 5. If A=
[

a b

c d

]

, then

A−1=
1

ad− bc

[

d −b

−c a

]

provided that ad− bc� 0.

Let’s check that:

1

ad− bc

[

d −b

−c a

][

a b

c d

]

=
1

ad− bc

[

ad− bc 0
0 −cb+ ad

]

= I2

Note.

• A 1× 1 matrix [ a ] is invertible� a� 0.

• A 2× 2 matrix

[

a b

c d

]

is invertible� ad− bc� 0.

We will encounter the quantities on the right again when we discuss determinants.
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Solving systems using matrix inverse

Theorem 6. Let A be invertible. Then the system Ax = b has the unique solution
x=A−1

b.

Proof. Multiply both sides of Ax= b with A−1 (from the left!). �

Example 7. Solve
−7x1 +3x2 = 2
5x1 −2x2 = 1

using matrix inversion.

Solution. In matrix form Ax= b, this system is

[

−7 3
5 −2

]

x=

[

2
1

]

.

Computing the inverse:

[

−7 3
5 −2

]

−1

=
1

−1

[

−2 −3
−5 −7

]

=

[

2 3
5 7

]

Recall that

[

a b

c d

]

−1

=
1

ad− bc

[

d −b

−c a

]

.

Hence, the solution is:

x=A−1
b=

[

2 3
5 7

][

2
1

]

=

[

7
17

]
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Recipe for computing the inverse

To solve Ax= b, we do row reduction on [ A b ].

To solve AX = I, we do row reduction on [ A I ].

To compute A−1: Gauss–Jordan method

• Form the augmented matrix [ A I ].

• Compute the reduced echelon form. (i.e. Gauss–Jordan elim ination)

• If A is invertible, the result is of the form
[

I A−1
]

.

Example 8. Find the inverse of A=





2 0 0
−3 0 1
0 1 0



, if it exists.

Solution. By row reduction:

[ A I ]  
[

I A−1
]





2 0 0 1 0 0
−3 0 1 0 1 0
0 1 0 0 0 1



  









1 0 0
1

2
0 0

0 1 0 0 0 1

0 0 1
3

2
1 0









Hence, A−1=









1

2
0 0

0 0 1
3

2
1 0









.

Example 9. Let’s do the previous example step by step.

[ A I ]  
[

I A−1
]





2 0 0 1 0 0
−3 0 1 0 1 0
0 1 0 0 0 1





>

R2→R2+
3

2
R1







2 0 0 1 0 0

0 0 1
3

2
1 0

0 1 0 0 0 1







>

R1→
1

2
R1

R2↔R3









1 0 0
1

2
0 0

0 1 0 0 0 1

0 0 1
3

2
1 0








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Note. Here is another way to see why this algorithm works:

• Each row reduction corresponds to multiplying with an elementary matrix E:

[ A I ] [ E1A E1I ] [ E2E1A E2E1 ] 


• So at each step:

[ A I ] [ FA F ] with F =Er�E2E1

• If we manage to reduce [ A I ] to [ I F ], this means

FA= I and hence A−1=F .

Some properties of matrix inverses

Theorem 10. Suppose A and B are invertible. Then:

• A−1 is invertible and (A−1)−1=A.

Why? Because AA−1= I

• AT is invertible and (AT)−1=(A−1)T .

Why? Because (A−1)TA
T =(AA

−1)T = I
T = I (Recall that (AB)T =B

T
A

T .)

• AB is invertible and (AB)−1=B−1A−1.

Why? Because (B−1A−1)(AB)=B−1IB=B−1B= I
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Review

• The inverse A−1 of a matrix A is, if it exists, characterized by

AA−1=A−1A= In.

•

[

a b

c d

]

−1

=
1

ad− bc

[

d −b

−c a

]

• If A is invertible, then the system Ax= b has the unique solution x=A−1
b.

• Gauss–Jordan method to compute A−1:

◦ bring to RREF [ A I ] 
[

I A−1
]

• (A−1)−1=A

• (AT)−1=(A−1)T

• (AB)−1=B−1A−1

Why? Because (B−1A−1)(AB)=B−1IB=B−1B= I

Further properties of matrix inverses

Theorem 1. Let A be an n × n matrix. Then the following statements are equiva-
lent: (i.e., for a given A, they are either all true or all false)

(a) A is invertible.

(b) A is row equivalent to In.

(c) A has n pivots. (Easy to check!)

(d) For every b, the system Ax= b has a unique solution.

Namely, x=A−1
b.

(e) There is a matrix B such that AB= In. (A has a “right inverse”.)

(f) There is a matrix C such that CA= In. (A has a “left inverse”.)

Note. Matrices that are not invertible are often called singular.

The book uses singular for n × n matrices that do not have n pivots. As we just saw, it doesn’t
make a difference.

Example 2. We now see at once that A=
[

0 1
0 0

]

is not invertible.

Why? Because it has only one pivot.
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Application: finite differences

Let us apply linear algebra to the boundary value problem (BVP)

−
d2u

dx2
= f(x), 06x6 1, u(0)=u(1)= 0.

f(x) is given, and the goal is to find u(x).

Physical interpretation: models steady-state temperature distribution in a bar (u(x) is temperature
at point x) under influence of an external heat source f(x) and with ends fixed at 0◦ (ice cube at
the ends?).

Remark 3. Note that this simple BVP can be solved by integrating f(x) twice. We get
two constants of integration, and so we see that the boundary condition u(0)=u(1)=0
makes the solution u(x) unique.

Of course, in the real applications the BVP would be harder. Also, f(x) might only be known at
some points, so we cannot use calculus to integrate it.

u(x)

x 1

We will approximate this problem as follows:

• replace u(x) by its values at equally spaced points in [0, 1]

u 0
=
0

u 1
=
u
(h
)

u 2
=
u
(2
h
)

u 3
=
u
(3
h
)

un
=
u
(n
h
)

un
+
1
=
0

. . .0 h 2h 3h nh 1

• approximate
d2u

dx2
at these points (finite differences)

• replace differential equation with linear equation at each point

• solve linear problem using Gaussian elimination
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Finite differences

Finite differences for first derivative:

du

dx
≈

∆u

∆x
=

u(x+ h)− u(x)

h

@

or u(x)−u(x− h)

h

@

or u(x+ h)− u(x−h)

2h
symmetric and most accurate

Note. Recall that you can always use L’Hospital’s rule to determine the limit of such
quantities (especially more complicated ones) as h→ 0.

Finite difference for second derivative:

d2u

dx2
≈

u(x+ h)− 2u(x)+u(x−h)

h2

the only symmetric choice involving only u(x), u(x±h)

Question 4. Why does this approximate
d2u

dx2
as h→ 0?

Solution.
d2u

dx2 ≈

du

dx
(x+h)−

du

dx
(x)

h

≈

u(x+h)−u(x)

h
−

u(x)−u(x−h)

h

h

≈
u(x+h)− 2u(x) +u(x−h)

h2
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Setting up the linear equations

−
d2u

dx2
= f(x), 06x6 1, u(0)=u(1)= 0.

u 0
=
0

u 1
=
u
(h
)

u 2
=
u
(2
h
)

u 3
=
u
(3
h
)

un
=
u
(n
h
)

un
+
1
=
0

. . .0 h 2h 3h nh 1

Using −
d2

u

dx2
≈−

u(x+h)− 2u(x)+u(x−h)

h2
, we get:

at x=h: −
u(2h)− 2u(h)+u(0)

h2
= f(h)

� 2u1− u2=h2f(h) (1)

at x=2h: −
u(3h)− 2u(2h)+u(h)

h2
= f(2h)

� −u1+2u2−u3=h2f(2h) (2)

at x=3h:

� −u2+2u3−u4=h2f(3h) (3)




at x=nh: −
u((n+1)h)− 2u(nh) +u((n− 1)h)

h2
= f(nh)

� −un−1+2un= h2f(nh) (n)

Example 5. In the case of six divisions (n=5, h=
1

6
), we get:













2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2













�

A













u1

u2

u3

u4

u5













�

x

=















h2f(h)

h2f(2h)

h2f(3h)

h2f(4h)

h2f(5h)















�

b
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Such a matrix is called a band matrix. As we will see next, such matrices always have
a particularly simple LU decomposition.

Gaussian elimination:












2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2













>

















1

1

2
1

1

1

1

















R2→R2+
1

2
R1















2 −1

0
3

2
−1

−1 2 −1
−1 2 −1

−1 2















>

















1

1

2

3
1

1

1

















R3→R3+
2

3
R2

















2 −1

0
3

2
−1

0
4

3
−1

−1 2 −1
−1 2

















>

















1

1

1

3

4
1

1

















R4→R4+
3

4
R3

















2 −1

0
3

2
−1

0
4

3
−1

0
5

4
−1

−1 2

















>

















1

1

1

1

4

5
1

















R5→R5+
4

5
R4



















2 −1

0
3

2
−1

0
4

3
−1

0
5

4
−1

0
6

5



















In conclusion, we have the LU decomposition:













2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2













=



















1

−
1

2
1

−
2

3
1

−
3

4
1

−
4

5
1





































2 −1
3

2
−1
4

3
−1
5

4
−1
6

5



















That’s how the LU decomposition of band matrices always looks like.
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Review

• Goal: solve for u(x) in the boundary value problem (BVP)

−
d2u

dx2
= f(x), 06 x6 1, u(0)= u(1)= 0.

• replace u(x) by its values at equally spaced points in [0, 1]

u 0
=
0

u 1
=
u
(h
)

u 2
=
u
(2
h
)

u 3
=
u
(3
h
)

un
=
u
(n
h
)

un
+
1
=
0

. . .0 h 2h 3h nh 1

• −
d2u

dx2
≈−

u(x+h)− 2u(x)+ u(x−h)

h2
at these points (finite differences)

• get a linear equation at each point x=h, 2h,
 , nh; for n=5, h=
1

6
:













2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2













�

A













u1

u2

u3

u4

u5













�

x

=















h2f(h)

h2f(2h)

h2f(3h)

h2f(4h)

h2f(5h)















�

b

• Compute the LU decomposition:













2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2













=



















1

−
1

2
1

−
2

3
1

−
3

4
1

−
4

5
1





































2 −1
3

2
−1
4

3
−1
5

4
−1
6

5



















That’s how the LU decomposition of band matrices always looks like.
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LU decomposition vs matrix inverse

In many applications, we don’t just solve Ax= b for a single b, but for many different
b (think millions).

Note, for instance, that in our example of “steady-state temperature distribution in a bar” the matrix
A is always the same (it only depends on the kind of problem), whereas the vector b models the
external heat (and thus changes for each specific instance).

• That’s why the LU decomposition saves us from repeating lots of computation in
comparison with Gaussian elimination on [ A b ].

• What about computing A−1?

We are going to see that this is a bad idea. (It usually is.)

Example 1. When using LU decomposition to solve Ax= b, we employ forward and
backward substitution:

Ax= b G

A=LU

Lc= b and Ux= c

Here, we have to solve, for each b,




















1

−

1

2
1

−

2

3
1

−

3

4
1

−

4

5
1





















c= b,





















2 −1

3

2
−1

4

3
−1

5

4
−1

6

5





















x= c

by forward and backward substitution.

How many operations (additions and multiplications) are needed in the n×n case?

2(n− 1) for Lc= b, and 1+2(n− 1) for Ux= c.

So, roughly, a total of 4n operations.

On the other hand,

A−1=
1

6













5 4 3 2 1
4 8 6 4 2
3 6 9 6 3
2 4 6 8 4
1 2 3 4 5













.

How many operations are needed to compute A−1
b?

This time, we need roughly 2n2 additions and multiplications.
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Conclusions

• Large matrices met in applications usually are not random but have some structure
(such as band matrices).

• When solving linear equations, we do not (try to) compute A−1.

◦ It destroys structure in practical problems.

◦ As a result, it can be orders of magnitude slower,

◦ and require orders of magnitude more memory.

◦ It is also numerically unstable.

◦ LU decomposition can be adjusted to not have these drawbacks.

A practice problem

Example 2. Above we computed the LU decomposition for n = 5. For comparison,
here are the details for computing the inverse when n=3.

Do it for n=5, and appreciate just how much computation has to be done.

Invert A=





2 −1
−1 2 −1

−1 2



.

Solution.





2 −1 0 1 0 0
−1 2 −1 0 1 0
0 −1 2 0 0 1





>

R2→R2+
1

2
R1







2 −1 0 1 0 0

0
3

2
−1

1

2
1 0

0 −1 2 0 0 1







>

R3→R3+
2

3
R2









2 −1 0 1 0 0

0
3

2
−1

1

2
1 0

0 0
4

3

1

3

2

3
1









>

R2→
2

3
R2

R3→
3

4
R3

R1→
1

2
R1











1 −
1

2
0

1

2
0 0

0 1 −
2

3

1

3

2

3
0

0 0 1
1

4

1

2

3

4











>

R1→R1+
1

2
R2

R2→R2+
2

3
R3











1 0 0
3

4

1

2

1

4

0 1 0
1

2
1

1

2

0 0 1
1

4

1

2

3

4











Hence,





2 −1
−1 2 −1

−1 2





−1

=











3

4

1

2

1

4

1

2
1

1

2

1

4

1

2

3

4











.
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Vector spaces and subspaces

We have already encountered vectors in R
n. Now, we discuss the general concept of

vectors.

In place of the space R
n, we think of general vector spaces.

Definition 3. A vector space is a nonempty set V of elements, called vectors, which
may be added and scaled (multiplied with real numbers).

The two operations of addition and scalar multiplication must satisfy the following
axioms for all u,v ,w in V , and all scalars c, d.

(a) u+v is in V

(b) u+v=v+u

(c) (u+v)+w=u+ (v+w)

(d) there is a vector (called the zero vector) 0 in V such that u+0=u for all u in V

(e) there is a vector −u such that u+(−u)= 0

(f) cu is in V

(g) c(u+v)= cu+ cv

(h) (c+ d)u= cu+ du

(i) (cd)u= c(du)

(j) 1u=u

tl;dr � A vector space is a collection of vectors which can be added and scaled
(without leaving the space!); subject to the usual rules you would hope for.

namely: associativity, commutativity, distributivity

Example 4. Convince yourself that M2×2=
{

[

a b

c d

]

: a, b, c, d in R

}

is a vector space.

Solution. In this context, the zero vector is 0=
[

0 0
0 0

]

.

Addition is componentwise:

[

a b

c d

]

+

[

e f

g h

]

=

[

a+ e b+ f

c+ g d+h

]

Scaling is componentwise:

r

[

a b

c d

]

=

[

ra rb

rc rd

]
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Addition and scaling satisfy the axioms of a vector space because they are defined
component-wise and because ordinary addition and multiplication are associative, com-
mutative, distributive and what not.

Important note: we do not use matrix multiplication here!

Note: as a vector space, M2×2 behaves precisely like R4; we could translate between
the two via

[

a b

c d

]

�









a

b

c

d









.

A fancy person would say that these two vector spaces are isomorphic.

Example 5. Let Pn be the set of all polynomials of degree at most n > 0. Is Pn a
vector space?

Solution. Members of Pn are of the form

p(t)= a0+ a1t+
 + ant
n,

where a0, a1,
 , an are in R and t is a variable.

Pn is a vector space.

Adding two polynomials:

[a0+ a1t+
 + ant
n] + [b0+ b1t+
 + bnt

n]

= [(a0+ b0)+ (a1+ b1)t+
 +(an+ bn)t
n]

So addition works “component-wise” again.

Scaling a polynomial:

r[a0+ a1t+
 + ant
n]

= [(ra0) + (ra1)t+
 +(ran)t
n]

Scaling works “component-wise” as well.

Again: the vector space axioms are satisfied because addition and scaling are defined
component-wise.

As in the previous example, we see that Pn is isomorphic to R
n+1:

a0+ a1t+
 + ant
n
�









a0
a1



an








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Example 6. Let V be the set of all polynomials of degree exactly 3. Is V a vector space?

Solution. No, because V does not contain the zero polynomial p(t)= 0.

Every vector space has to have a zero vector; this is an easy necessary (but not sufficient) criterion
when thinking about whether a set is a vector space.

More generally, the sum of elements in V might not be in V :

[1 + 4t2+ t3] + [2− t+ t2− t3] = [3− t+5t2]

Armin Straub
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6



Review

• A vector space is a set of vectors which can be added and scaled (without leaving
the space!); subject to the “usual” rules.

• The set of all polynomials of degree up to 2 is a vector space.

[a0+ a1t+ a2t
2] + [b0+ b1t+ b2t

2] = [(a0+ b0) + (a1+ b1)t+(a2+ b2)t
2]

r[a0+ a1t+ a2t
2] = [(ra0) + (ra1)t+(ra2)t

2]

Note how it “works” just like R
3.

• The set of all polynomials of degree exactly 2 is not a vector space.

[1+ 4t+ t2]
�

degree 2

+ [3− t− t2]
�

degree 2

= [4+3t]
�

NOT degree 2

• An easy test that often works is to check whether the set contains the zero vector.
(Works in the previous case.)

Example 1. Let V be the set of all functions f :R→R. Is V a vector space?

Solution. Yes!

Addition of functions f and g:

(f + g)(x)= f(x)+ g(x)

Note that, once more, this definition is “component-wise”.

Likewise for scalar multiplication.
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Subspaces

Definition 2. A subsetW of a vector space V is a subspace if W is itself a vector space.

Since the rules like associativity, commutativity and distributivity still hold, we only need
to check the following:

W ⊆ V is a subspace of V if

• W contains the zero vector 0,

• W is closed under addition, (i.e. if u,v ∈W then u+v ∈W )

• W is closed under scaling. (i.e. if u∈W and c∈R then cu∈W )

Note that “0 in W ” (first condition) follows from “W closed under scaling” (third condition). But it
is crucial and easy to check, so deserves its own bullet point.

Example 3. Is W = span

{

[

1
1

]

}

a subspace of R2?

Solution. Yes!

• W contains
[

0
0

]

=0
[

1
1

]

.

•
[

a

a

]

+
[

b

b

]

=
[

a+ b

a+ b

]

is in W .

• c
[

a

a

]

=
[

ca

ca

]

is in W .

Example 4. Is W =

{





a

0
b



: a, b in R

}

a subspace of R3?

Solution. Yes!

• W contains





0
0
0



.

•





a1

0
b1



+





a2

0
b2



=





a1+ a2

0
b1+ b2



 is in W .

• c





a

0
b



=





ca

0
cb



 is in W .

The subspace W is isomorphic to R
2 (translation:





a

0
b



↔
[

a

b

]

) but they are not the

same!

Example 5. Is W =

{





a

1
b



: a, b in R

}

a subspace of R3?

Solution. No! Missing 0.
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Note: W =





0
1
0



+

{





a

0
b



: a, b in R

}

is “close” to a vector space.

Geometrically, it is a plane, but it does not contain the origin.

Example 6. Is W =
{

[

0
0

]

}

a subspace of R2?

Solution. Yes!

• W contains
[

0
0

]

.

•
[

0
0

]

+
[

0
0

]

=
[

0
0

]

is in W .

• c
[

0
0

]

=
[

0
0

]

is in W .

Example 7. Is W =
{

[

x

x+1

]

:x in R

}

a subspace of R2?

Solution. No! W does not contain
[

0
0

]

.

[If 0 is missing, some other things always go wrong as well.

For instance, 2
[

1
2

]

=
[

2
4

]

or
[

1
2

]

+
[

2
3

]

=
[

3
5

]

are not in W .]

Example 8. Is W =
{

[

0
0

]

}

∪
{

[

x

x+1

]

:x in R

}

a subspace of R2?

[In other words, W is the set from the previous example plus the zero vector.]

Solution. No! 2
[

1
2

]

=
[

2
4

]

not in W.

Spans of vectors are subspaces

Review. The span of vectors v1, v2,
 , vm is the set of all their linear combinations.
We denote it by span{v1,v2,
 ,vm}.

In other words, span{v1,v2,
 ,vm} is the set of all vectors of the form

c1v1+ c2v2+
 + cmvm,

where c1, c2,
 , cm are scalars.

Theorem 9. If v1,
 ,vm are in a vector space V , then span{v1,
 ,vm} is a subspace
of V .

Why?

• 0 is in span{v1,
 ,vm}

• [c1v1+
 + cmvm] + [d1v1+
 + dmvm]
= [(c1+ d1)v1+
 +(cm+ dm)vm]

• r[c1v1+
 + cmvm] = [(rc1)v1+
 +(rcm)vm]
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Example 10. Is W =
{

[

a+3b
2a− b

]

: a, b in R

}

a subspace of R2?

Solution. Write vectors in W in the form

[

a+3b
2a− b

]

=

[

a

2a

]

+

[

3b
−b

]

= a

[

1
2

]

+ b

[

3
−1

]

to see that

W = span

{[

1
2

]

,

[

3
−1

]}

.

By the theorem, W is a vector space. Actually, W =R
2.

Example 11. Is W =
{

[

−a 2b
a+ b 3a

]

: a, b in R

}

a subspace of M2×2, the space of 2× 2

matrices?

Solution. Write “vectors” in W in the form

[

−a 2b
a+ b 3a

]

= a

[

−1 0
1 3

]

+ b

[

0 2
1 0

]

to see that

W = span

{[

−1 0
1 3

]

,

[

0 2
1 0

]}

.

By the theorem, W is a vector space.
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Practice problems

Example 12. Are the following sets vector spaces?

(a) W1=
{

[

a b

c d

]

: a+3b=0, 2a− c=1
}

No, W1 does not contain 0.

(b) W2=
{

[

a+ c −2b
b+3c c

]

: a, b, c in R

}

Yes, W2= span

{
[

1 0

0 0

]

,
[

0 −2

1 0

]

,
[

1 0

3 1

]
}

.

Hence, W2 is a subspace of the vector space Mat2×2 of all 2× 2 matrices.

(c) W3=
{

[

a

b

]

: ab> 0
}

No. For instance,
[

3

1

]

+
[

−2

−4

]

=
[

1

−3

]

is not in W3.

(d) W4 is the set of all polynomials p(t) such that p′(2)= 1.

No. W4 does not contain the zero polynomial.

(e) W5 is the set of all polynomials p(t) such that p′(2)= 0.

Yes. If p′(2)= 0 and q′(2)= 0, then (p+ q)′(2)= 0. Likewise for scaling.

Hence, W5 is a subspace of the vector space of all polynomials.
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Midterm!

• Midterm 1: Thursday, 7–8:15pm

◦ in 23 Psych if your last name starts with A or B

◦ in Foellinger Auditorium if your last name starts with C, D, ..., Z

◦ bring a picture ID and show it when turning in the exam

Review

• A vector space is a set V of vectors which can be added and scaled (without leaving
the space!); subject to the “usual” rules.

• W ⊆V is a subspace of V if it is a vector space itself; that is,

◦ W contains the zero vector 0,

◦ W is closed under addition, (i.e. if u,v ∈W then u+v ∈W )

◦ W is closed under scaling. (i.e. if u∈W and c∈R then cu∈W )

• span{v1,
 ,vm} is always a subspace of V . (v
1
, 
 ,v

m

are vectors in V )

Example 1. Is W =
{

[

2a− b 0

b 3

]

: a, b in R

}

a subspace of M2×2, the space of 2× 2

matrices?

Solution. No, W does not contain the zero “vector”.

Example 2. Is W =
{

[

2a− b 0

b 3a

]

: a, b in R

}

a subspace of M2×2, the space of 2× 2

matrices?

Solution. Write “vectors” in W in the form

[

2a− b 0
b 3a

]

= a

[

2 0
0 3

]

+ b

[

−1 0
1 0

]

to see that

W = span

{[

2 0
0 3

]

,

[

−1 0
1 0

]}

.

Like any span, W is a vector space.

Armin Straub
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Example 3. Are the following sets vector spaces?

(a) W1=
{

[

a b

c d

]

: a+3b=0, 2a− c=1
}

No, W1 does not contain 0.

(b) W2=
{

[

a+ c −2b

b+3c c

]

: a, b, c in R

}

Yes, W2= span

{
[

1 0

0 0

]

,
[

0 −2

1 0

]

,
[

1 0

3 1

]
}

.

Hence, W2 is a subspace of the vector space Mat2×2 of all 2× 2 matrices.

(c) W3=
{

[

a+ c −2b

b+3c c+7

]

: a, b, c in R

}

(more complicated)

We still have W3=
[

0 0

0 7

]

+ span

{
[

1 0

0 0

]

,
[

0 −2

1 0

]

,
[

1 0

3 1

]
}

.

Hence, W3 is a subspace if and only if
[

0 0

0 7

]

is in the span. (We can answer such questions!)

Equivalently (why?!), we have to check whether
[

a+ c −2b

b+3c c+7

]

=
[

0 0

0 0

]

has solutions a, b, c.

There is no solution (−2b = 0 implies b = 0, then b + 3c = 0 implies c = 0; this contradicts
c+7=0).

(d) W4=
{

[

a

b

]

: ab> 0
}

No. For instance,
[

3

1

]

+
[

−2

−4

]

=
[

1

−3

]

is not in W4.

(e) W5 is the set of all polynomials p(t) such that p′(2)= 1.

No. W5 does not contain the zero polynomial.

(f) W6 is the set of all polynomials p(t) such that p′(2)= 0.

Yes. If p′(2)= 0 and q′(2)= 0, then (p+ q)′(2)= p′(2)+ q ′(2)= 0. Likewise for scaling.

Hence, W6 is a subspace of the vector space of all polynomials.

Armin Straub
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What we learned before vector spaces

Linear systems

• Systems of equations can be written as Ax= b.

x1 − 2x2 = −1
−x1 + 3x2 = 3

�

[

1 −2
−1 3

]

x=

[

−1
3

]

Sometimes, we represent the system by its augmented matrix.

[

1 −2 −1
−1 3 3

]

• A linear system has either

◦ no solution (such a system is called inconsistent),

� echelon form contains row [ 0 ... 0 b ] with b� 0

◦ one unique solution,

� system is consistent and has no free variables

◦ infinitely many solutions.

� system is consistent and has at least one free variable

• We know different techniques for solving systems Ax= b.

◦ Gaussian elimination on [ A b ]

◦ LU decomposition A=LU

◦ using matrix inverse, x=A−1
b

Armin Straub
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Matrices and vectors

• A linear combination of v1,v2,
 ,vm is of the form

c1v1+ c2v2+
 + cmvm.

• span{v1,v2,
 ,vm} is the set of all such linear combinations.

◦ Spans are always vector spaces.

◦ For instance, a span in R
3 can be {0}, a line, a plane, or R3.

• The transpose AT of a matrix A has rows and columns flipped.




2 0
3 1
−1 4





T

=

[

2 3 −1
0 1 4

]

◦ (A+B)T =AT +BT

◦ (AB)T =BTAT

• An m×n matrix A has m rows and n columns.

• The product Ax of matrix times vector is





| | |
a1 a2 � an

| | |









x1




xn



= x1a1+ x2a2+
 +xnan.

• Different interpretations of the product of matrix times matrix:

◦ column interpretation





a b c

d e f

g h i









1 0 0
0 1 0
3 0 1



=





a+3c b c

d+3f e f

g+3i h i





◦ row interpretation





1 0 0
0 1 0
3 0 1









a b c

d e f

g h i



=





a b c

d e f

3a+ g 3b+ h 3c+ i





◦ row-column rule

(AB)i,j= (row i of A) · (col j of B)

Armin Straub
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• The inverse A−1 of A is characterized by A−1A= I (or AA−1= I).

◦

[

a b

c d

]

=
1

ad− bc

[

d −b

−c a

]

◦ Can compute A−1 using Gauss–Jordan method.

[ A I ] >

RREF [

I A−1
]

◦ (AT)−1=(A−1)T

◦ (AB)−1=B−1A−1

◦ An n×n matrix A is invertible

� A has n pivots

� Ax= b has a unique solution (if true for one b, then true for all b)

Gaussian elimination

• Gaussian elimination can bring any matrix into an echelon form.

















0 � ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 � ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 � ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 � ∗ ∗ ∗
0 0 0 0 0 0 0 0 � ∗ ∗
0 0 0 0 0 0 0 0 0 0 0

















It proceeds by elementary row operations:

◦ (replacement) Add one row to a multiple of another row.

◦ (interchange) Interchange two rows.

◦ (scaling) Multiply all entries in a row by a nonzero constant.

• Each elementary row operation can be encoded as multiplication with an elemen-
tary matrix.





1 0 0
−1 1 0
0 0 1









a b c d

e f g h

i j k l



=





a b c d

e− a f − b g− c h− d

i j k l





• We can continue row reduction to obtain the (unique) RREF.

Armin Straub
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Using Gaussian elimination

Gaussian elimination and row reductions allow us:

• solve systems of linear systems




0 3 −6 4 −5
3 −7 8 8 9
3 −9 12 6 15





 





1 0 −2 0 −24

0 1 −2 0 −7
0 0 0 1 4



















x1=−24+2x3
x2=−7+ 2x3
x3 free
x4=4

• compute the LU decomposition A=LU




2 1 1
4 −6 0
−2 7 2



=





1
2 1
−1 −1 1









2 1 1
−8 −2

1





• compute the inverse of a matrix

to find





2 0 0
−3 0 1
0 1 0





−1

=









1

2
0 0

0 0 1
3

2
1 0









, we use Gauss–Jordan:





2 0 0 1 0 0
−3 0 1 0 1 0
0 1 0 0 0 1





>

RREF









1 0 0
1

2
0 0

0 1 0 0 0 1

0 0 1
3

2
1 0









• determine whether a vector is a linear combination of other vectors




1

2

3



 is a linear combination of





1

1

1



 and





1

2

0



 if and only if

the system corresponding to





1 1 1

1 2 2

1 0 3



 is consistent.

(Each solution
[

x1

x2

]

gives a linear combination





1

2

3



= x1





1

1

1



+ x2





1

2

0



.)

Armin Straub
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Organizational

• Interested in joining class committee?

meet ∼3 times to discuss ideas you may have for improving class

Next: bases, dimension and such

http://abstrusegoose.com/235

Armin Straub
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Solving Ax=0 and Ax= b

Column spaces

Definition 1. The column space Col(A) of a matrix A is the span of the columns of A.

If A= [ a1 
 an ], then Col(A)= span{a1,
 ,an}.

• In other words, b is in Col(A) if and only if Ax= b has a solution.

Why? Because Ax=x1a1+
 +xnan is the linear combination of columns of A with coefficients
given by x.

• If A is m×n, then Col(A) is a subspace of Rm.

Why? Because any span is a space.

Example 2. Find a matrix A such that W =Col(A) where

W =











2x− y

3y
7x+ y



 : x, y in R







.

Solution. Note that





2x− y

3y
7x+ y



= x





2
0
7



+ y





−1
3
1



.

Hence,

W = span











2
0
7



,





−1
3
1











=Col









2 −1
0 3
7 1







.

Armin Straub
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Null spaces

Definition 3. The null space of a matrix A is

Nul(A)= {x : Ax=0}.

In other words, if A is m× n, then its null space consists of those vectors x∈R
n which solve the

homogeneous equation Ax=0.

Theorem 4. If A is m×n, then Nul(A) is a subspace of Rn.

Proof. We check that Nul(A) satisfies the conditions of a subspace:

• Nul(A) contains 0 because A0=0.

• If Ax= 0 and Ay= 0, then A(x+ y)=Ax+Ay=0.

Hence, Nul(A) is closed under addition.

• If Ax= 0, then A(cx)= cAx= 0.

Hence, Nul(A) is closed under scalar multiplication.

�

Armin Straub
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Solving Ax=0 yields an explicit description of Nul(A).

By that we mean a description as the span of some vectors.

Example 5. Find an explicit description of Nul(A) where

A=

[

3 6 6 3 9
6 12 13 0 3

]

.

Solution.

[

3 6 6 3 9
6 12 13 0 3

]

>

R2→R2−2R1
[

3 6 6 3 9
0 0 1 −6 −15

]

>

R1→
1

3
R1

[

1 2 2 1 3
0 0 1 −6 −15

]

>

R1→R1−2R2
[

1 2 0 13 33

0 0 1 −6 −15

]

From the RREF we read off a parametric description of the solutions x to Ax=0. Note
that x2, x4, x5 are free.

x=













x1

x2

x3

x4

x5













=













−2x2− 13x4− 33x5

x2

6x4+ 15x5

x4

x5













= x2













−2
1
0
0
0













+ x4













−13

0
6
1
0













+ x5













−33

0
15

0
1













In other words,

Nul(A)= span



































−2
1
0
0
0













,













−13

0
6
1
0













,













−33

0
15

0
1



































.

Note. The number of vectors in the spanning set for Nul(A) as derived above (which
is as small as possible) equals the number of free variables in Ax=0.
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Another look at solutions to Ax= b

Theorem 6. Let xp be a solution of the equation Ax= b.

Then every solution to Ax= b is of the form x= xp + xn, where xn is a solution to
the homogeneous equation Ax=0.

• In other words, {x : Ax= b}=xp+Nul(A).

• We often call xp a particular solution.

The theorem then says that every solution to Ax = b is the sum of a fixed chosen particular
solution and some solution to Ax=0.

Proof. Let x be another solution to Ax= b.

We need to show that xn=x−xp is in Nul(A).

A(x−xp)=Ax−Axp= b− b=0

�

Example 7. Let A=





1 3 3 2
2 6 9 7
−1 −3 3 4



 and b=





1
5
5



.

Using the RREF, find a parametric description of the solutions to Ax= b:





1 3 3 2 1
2 6 9 7 5
−1 −3 3 4 5




>

R2→R2−2R1
R3→R3+R1





1 3 3 2 1
0 0 3 3 3
0 0 6 6 6





>

R3→R3−2R2




1 3 3 2 1
0 0 3 3 3
0 0 0 0 0





>

R2→
1

3
R2





1 3 3 2 1
0 0 1 1 1
0 0 0 0 0





>

R1→R1−3R2




1 3 0 −1 −2
0 0 1 1 1
0 0 0 0 0





Every solution to Ax= b is therefore of the form:

x=









x1

x2

x3

x4









=









−2− 3x2+x4

x2

1−x4

x4









Armin Straub
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=









−2
0
1
0









�

xp

+ x2









−3
1
0
0









+x4









1
0
−1
1









�

elements of Nul(A)

We can see nicely how every solution is the sum of a particular solution xp and solutions
to Ax=0.

Note. A convenient way to just find a particular solution is to set all free variables to
zero (here, x2=0 and x4=0).

Of course, any other choice for the free variables will result in a particular solution.

For instance, x2=1 and x4=1 we would get xp=









−4

1

0

1









.

Practice problems

• True or false?

◦ The solutions to the equation Ax= b form a vector space.

No, with the only exception of b=0.

◦ The solutions to the equation Ax= 0 form a vector space.

Yes. This is the null space Nul(A).

Example 8. Is the given set W a vector space?

If possible, express W as the column or null space of some matrix A.

(a) W =

{





x

y

z



 : 5x= y+2z

}

(b) W =

{





x

y

z



 : 5x− 1= y+2z

}

(c) W =

{





x

y

x+ y



 : x, y in R

}

Example 9. Find an explicit description of Nul(A) where

A=

[

1 3 5 0
0 1 4 −2

]

.
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Review

• Every solution to Ax= b is the sum of a fixed chosen particular solution and some
solution to Ax=0.

For instance, let A=





1 3 3 2

2 6 9 7

−1 −3 3 4



 and b=





1

5

5



.

Every solution to Ax= b is of the form:

x=









x1

x2

x3

x4









=









−2− 3x2+ x4

x2

1− x4
x4









=









−2

0

1

0









�

xp

+ x2









−3

1

0

0









+ x4









1

0

−1

1









�

elements of Nul(A)

• Is span

{





1

1

1



,





1

2

3



,





−1

1

3





}

equal to R
3?

Linear independence

Review.

• span{v1,v2,
 ,vm} is the set of all linear combinations

c1v1+ c2v2+
 + cmvm.

• span{v1,v2,
 ,vm} is a vector space.

Example 1. Is span

{





1

1

1



,





1

2

3



,





−1

1

3





}

equal to R
3?

Solution. Recall that the span is equal to











1 1 −1
1 2 1
1 3 3



x : x in R
3







.

Hence, the span is equal to R3 if and only if the system with augmented matrix





1 1 −1 b1
1 2 1 b2
1 3 3 b3





is consistent for all b1, b2, b3.
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Gaussian elimination:





1 1 −1 b1
1 2 1 b2
1 3 3 b3





 





1 1 −1 b1
0 1 2 b2− b1
0 2 4 b3− b1





 





1 1 −1 b1
0 1 2 b2− b1
0 0 0 b3− 2b2+ b1





The system is only consistent if b3− 2b2+ b1=0.

Hence, the span does not equal all of R3.

• What went “wrong”? span

{





1

1

1



,





1

2

3



,





−1

1

3





}

Well, the three vectors in the span satisfy





−1
1
3



=−3





1
1
1



+2





1
2
3



.

• Hence, span

{





1

1

1



,





1

2

3



,





−1

1

3





}

= span

{





1

1

1



,





1

2

3





}

.

• We are going to say that the three vectors are linearly dependent because they
satisfy

−3





1
1
1



+2





1
2
3



−





−1
1
3



=0.

Definition 2. Vectors v1,
 ,vp are said to be linearly independent if the equation

x1v1+ x2v2+
 +xpvp=0

has only the trivial solution (namely, x1=x2=
 =xp=0).

Likewise, v1,
 ,vp are said to be linearly dependent if there exist coefficients x1,
 , xp, not all zero,
such that

x1v1+ x2v2+
 + xpvp=0.
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Example 3.

• Are the vectors





1

1

1



,





1

2

3



,





−1

1

3



 independent?

• If possible, find a linear dependence relation among them.

Solution. We need to check whether the equation

x1





1
1
1



+ x2





1
2
3



+x3





−1
1
3



=





0
0
0





has more than the trivial solution.

In other words, the three vectors are independent if and only if the system





1 1 −1
1 2 1
1 3 3



x=0

has no free variables.

To find out, we reduce the matrix to echelon form:




1 1 −1
1 2 1
1 3 3





 





1 1 −1
0 1 2
0 2 4





 





1 1 −1
0 1 2
0 0 0





Since there is a column without pivot, we do have a free variable.

Hence, the three vectors are not linearly independent.

To find a linear dependence relation, we solve this system.

Initial steps of Gaussian elimination are as before:





1 1 −1 0
1 2 1 0
1 3 3 0





 
  





1 1 −1 0
0 1 2 0
0 0 0 0





 





1 0 −3 0
0 1 2 0
0 0 0 0





x3 is free. x2=−2x3, and x1=3x3. Hence, for any x3,

3x3





1
1
1



− 2x3





1
2
3



+x3





−1
1
3



=





0
0
0



.

Since we are only interested in one linear combination, we can set, say, x3=1:

3





1
1
1



− 2





1
2
3



+





−1
1
3



=





0
0
0




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Linear independence of matrix columns

• Note that a linear dependence relation, such as

3





1
1
1



− 2





1
2
3



+





−1
1
3



=0,

can be written in matrix form as




1 1 −1
1 2 1
1 3 3









3
−2
1



=0.

• Hence, each linear dependence relation among the columns of a matrix A corre-
sponds to a nontrivial solution to Ax= 0.

Theorem 4. Let A be an m×n matrix.

The columns of A are linearly independent.
� Ax=0 has only the solution x=0.
� Nul(A)= {0}
� A has n pivots. (one in each column)

Example 5. Are the vectors





1

1

1



,





1

2

3



,





−1

2

3



 independent?

Solution. Put the vectors in a matrix, and produce an echelon form:





1 1 −1
1 2 2
1 3 3





 





1 1 −1
0 1 3
0 2 4





 





1 1 −1
0 1 3
0 0 −2





Since each column contains a pivot, the three vectors are independent.

Example 6. (once again, short version)

Are the vectors





1

1

1



,





1

2

3



,





−1

1

3



 independent?

Solution. Put the vectors in a matrix, and produce an echelon form:





1 1 −1
1 2 1
1 3 3





 





1 1 −1
0 1 2
0 2 4





 





1 1 −1
0 1 2
0 0 0





Since the last column does not contain a pivot, the three vectors are linearly dependent.

Armin Straub
astraub@illinois.edu

4



Special cases

• A set of a single nonzero vector {v1} is always linearly independent.

Why? Because x1v1=0 only for x1=0.

• A set of two vectors {v1, v2} is linearly independent if and only if neither of the
vectors is a multiple of the other.

Why? Because if x1v1+ x2v2=0 with, say, x2� 0, then v2=−
x1

x2

v1.

• A set of vectors {v1,
 ,vp} containing the zero vector is linearly dependent.

Why? Because if, say, v1=0, then v1+0v2+
 +0vp=0.

• If a set contains more vectors than there are entries in each vector, then the set is
linearly dependent. In other words:

Any set {v1,
 ,vp} of vectors in R
n is linearly dependent if p>n.

Why?

Let A be the matrix with columns v1,
 ,vp. This is a n× p matrix.

The columns are linearly independent if and only if each column contains a pivot.

If p>n, then the matrix can have at most n pivots.

Thus not all p columns can contain a pivot.

In other words, the columns have to be linearly dependent.

Example 7. With the least amount of work possible, decide which of the following sets
of vectors are linearly independent.

(a)

{





3

2

1



,





9

6

4





}

Linearly independent, because the two vectors are not multiples of each other.

(b)

{





3

2

1





}

Linearly independent, because it is a single nonzero vector.

(c) columns of





1 2 3 4

5 6 7 8

9 8 7 6





Linearly dependent, because these are more than 3 (namely, 4) vectors in R
3.

(d)

{





3

2

1



,





9

6

4



,





0

0

0





}

Linearly dependent, because the set includes the zero vector.
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Review

• Vectors v1,
 ,vp are linearly dependent if

x1v1+ x2v2+
 +xpvp=0,

and not all the coefficients are zero.

• The columns of A are linearly independent

� each column of A contains a pivot.

• Are the vectors





1
1
1



,





1
2
3



,





−1
1
3



 independent?





1 1 −1
1 2 1
1 3 3





 





1 1 −1
0 1 2
0 2 4





 





1 1 −1
0 1 2
0 0 0





So: no, they are dependent! (Coeff’s x3=1, x2=−2, x1=3)

• Any set of 11 vectors in R
10 is linearly dependent.

A basis of a vector space

Definition 1. A set of vectors {v1,
 ,vp} in V is a basis of V if

• V = span{v1,
 , vp}, and

• the vectors v1,
 ,vp are linearly independent.

In other words, {v1,
 ,vp} in V is a basis of V if and only if every vector w in V can be uniquely
expressed as w= c1v1+
 + cpvp.

Example 2. Let e1=





1
0
0



, e2=





0
1
0



, e3=





0
0
1



.

Show that {e1, e2, e3} is a basis of R3. It is called the standard basis.

Solution.

• Clearly, span{e1, e2, e3}=R
3.

• {e1, e2, e3} are independent, because





1 0 0
0 1 0
0 0 1





has a pivot in each column.

Definition 3. V is said to have dimension p if it has a basis consisting of p vectors.
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This definition makes sense because if V has a basis of p vectors, then every basis of V has p vectors.

Why? (Think of V =R
3.)

A basis of R3 cannot have more than 3 vectors, because any set of 4 or more vectors in R
3 is linearly

dependent.

A basis of R3 cannot have less than 3 vectors, because 2 vectors span at most a plane (challenge:
can you think of an argument that is more “rigorous”?).

Example 4. R
3 has dimension 3.

Indeed, the standard basis





1
0
0



,





0
1
0



,





0
0
1



 has three elements.

Likewise, Rn has dimension n.

Example 5. Not all vector spaces have a finite basis. For instance, the vector space of
all polynomials has infinite dimension.

Its standard basis is 1, t, t2, t3,


This is indeed a basis, because any polynomial can be written as a unique linear combination:
p(t)= a0+ a1t+
 + ant

n for some n.

Recall that vectors in V form a basis of V if they span V and if they are linearly
independent. If we know the dimension of V , we only need to check one of these two
conditions:

Theorem 6. Suppose that V has dimension d.

• A set of d vectors in V are a basis if they span V .

• A set of d vectors in V are a basis if they are linearly independent.

Why?

• If the d vectors were not independent, then d − 1 of them would still span V . In the end, we
would find a basis of less than d vectors.

• If the d vectors would not span V , then we could add another vector to the set and have d+ 1
independent ones.

Example 7. Are the following sets a basis for R3?

(a)

{





1
2
0



,





0
1
1





}

No, the set has less than 3 elements.

(b)

{





1
2
0



,





0
1
1



,





1
0
3



,





−1
2
0





}

No, the set has more than 3 elements.
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(c)

{





1
2
0



,





0
1
1



,





1
0
3





}

The set has 3 elements. Hence, it is a basis if and only if the vectors are independent.





1 0 1
2 1 0
0 1 3





 





1 0 1
0 1 −2
0 1 3





 





1 0 1
0 1 −2
0 0 5





Since each column contains a pivot, the three vectors are independent.

Hence, this is a basis of R3.

Example 8. Let P2 be the space of polynomials of degree at most 2.

• What is the dimension of P2?

• Is {t, 1− t, 1+ t− t2} a basis of P2?

Solution.

• The standard basis for P2 is {1, t, t2}.

This is indeed a basis because every polynomial

a0+ a1t+ a2t
2

can clearly be written as a linear combination of 1, t, t2 in a unique way.

Hence, P2 has dimension 3.

• The set {t, 1− t, 1 + t− t2} has 3 elements. Hence, it is a basis if and only if the
three polynomials are linearly independent.

We need to check whether

x1t+x2(1− t)+x3(1+ t− t2)
�

(x2+x3)+(x1−x2+x3)t−x3t2

=0

has only the trivial solution x1=x2=x3=0.

We get the equations

x2+x3 = 0

x1− x2+x3 = 0

−x3 = 0

which clearly only have the trivial solution. (If you don’t see it, solve the system!)

Hence, {t, 1− t, 1+ t− t2} is a basis of P2.
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Shrinking and expanding sets of vectors

We can find a basis for V = span{v1,
 ,vp} by discarding, if necessary, some of the
vectors in the spanning set.

Example 9. Produce a basis of R2 from the vectors

v1=

[

1
2

]

, v2=

[

−2
−4

]

, v3=

[

1
1

]

.

Solution. Three vectors in R
2 have to be linearly dependent.

Here, we notice that v2=−2v1.

The remaining vectors {v1, v3} are a basis of R2, because the two vectors are clearly
independent.

Checking our understanding

Example 10. Subspaces of R3 can have dimension 0, 1, 2, 3.

• The only 0-dimensional subspace is {0}.

• A 1-dimensional subspace is of the form span{v} where v � 0.

These subspaces are lines through the origin.

• A 2-dimensional subspace is of the form span{v , w} where v and w are not
multiples of each other.

These subspaces are planes through the origin.

• The only 3-dimensional subspace is R3 itself.

True or false?

• Suppose that V has dimension n. Then any set in V containing more than n vectors
must be linearly dependent.

That’s correct.

• The space Pn of polynomials of degree at most n has dimension n+1.

True, as well. A basis is {1, t, t2,
 , tn}.

• The vector space of functions f :R→R is infinite-dimensional.

Yes. A still-infinite-dimensional subspace are the polynomials.

• Consider V = span{v1,
 ,vp}. If one of the vectors, say vk, in the spanning set is
a linear combination of the remaining ones, then the remaining vectors still span V .

True, vk is not adding anything new.
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Review

• {v1,
 ,vp} is a basis of V if the vectors

◦ span V , and

◦ are independent.

• The dimension of V is the number of elements in a basis.

• The columns of A are linearly independent

� each column of A contains a pivot.

Warmup

Example 1. Find a basis and the dimension of

W =























a+ b+2c
2a+2b+4c+ d

b+ c+ d

3a+3c+ d









: a, b, c, d real















.

Solution.

First, note that

W = span























1
2
0
3









,









1
2
1
0









,









2
4
1
3









,









0
1
1
1























.

Is dimW =4? No, because the third vector is the sum of the first two.

Suppose we did not notice


A=









1 1 2 0
2 2 4 1
0 1 1 1
3 0 3 1









 









1 1 2 0
0 0 0 1
0 1 1 1
0 −3 −3 1









 









1 1 2 0
0 1 1 1
0 −3 −3 1
0 0 0 1









 









1 1 2 0
0 1 1 1
0 0 0 4
0 0 0 1









 









1 1 2 0
0 1 1 1
0 0 0 4
0 0 0 0









Not a pivot in every column, hence the 4 vectors are dependent.
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[Not necessary here, but:

To get a relation, solve Ax=0. Set free variable x3=1.

Then x4=0, x2=−x3=−1 and x1=−x2− 2x3=−1. The relation is

−









1

2

0

3









−









1

2

1

0









+









2

4

1

3









+0









0

1

1

1









=0.

Precisely, what we “noticed” to begin with.]

Hence, a basis for W is









1

2

0

3









,









1

2

1

0









,









0

1

1

1









and dimW =3.

It follows from the echelon form that these vectors are independent.

Every set of linearly independent vectors can be extended to a basis.

In other words, let {v1,
 ,vp} be linearly independent vectors in V . If V has dimension d, then we
can find vectors vp+1,
 ,vd such that {v1,
 ,vd} is a basis of V .

Example 2. Consider

H = span











1
0
0



,





1
1
1











.

• Give a basis for H . What is the dimension of H?

• Extend the basis of H to a basis of R3.

Solution.

• The vectors are independent. By definition, they span H .

Therefore,

{





1

0

0



,





1

1

1





}

is a basis for H .

In particular, dimH =2.

•

{





1

0

0



,





1

1

1





}

is not a basis for R3. Why?

Because a basis for R3 needs to contain 3 vectors.

Or, because, for instance,





0

0

1



 is not in H .

So: just add this (or any other) missing vector!

By construction,

{





1

0

0



,





1

1

1



,





0

0

1





}

is independent.

Hence, this automatically is a basis of R3.
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Bases for column and null spaces

Bases for null spaces

To find a basis for Nul(A):

• find the parametric form of the solutions to Ax=0,

• express solutions x as a linear combination of vectors with the free variables as
coefficients;

• these vectors form a basis of Nul(A).

Example 3. Find a basis for Nul(A) with

A=

[

3 6 6 3 9
6 12 15 0 3

]

.

Solution.
[

3 6 6 3 9
6 12 15 0 3

]

 

[

3 6 6 3 9
0 0 3 −6 −15

]

 

[

1 2 2 1 3
0 0 1 −2 −5

]

 

[

1 2 0 5 13

0 0 1 −2 −5

]

The solutions to Ax=0 are:

x=













−2x2− 5x4− 13x5

x2
2x4+5x5

x4
x5













= x2













−2

1

0

0

0













+ x4













−5

0

2

1

0













+ x5













−13

0

5

0

1













Hence, Nul(A)= span



























−2

1

0

0

0













,













−5

0

2

1

0













,













−13

0

5

0

1



























.

These vectors are clearly independent.

If you don’t see it, do compute an echelon form! (permute first and third row to the bottom)

Better yet: note that the first vector corresponds to the solution with x2 = 1 and the other free
variables x4 = 0, x5 = 0. The second vector corresponds to the solution with x4 = 1 and the other
free variables x2=0, x5=0. The third vector 


Hence,



























−2

1

0

0

0













,













−5

0

2

1

0













,













−13

0

5

0

1



























is a basis for Nul(A).
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Bases for column spaces

Recall that the columns of A are independent

� Ax=0 has only the trivial solution (namely, x=0),

� A has no free variables.

A basis for Col(A) is given by the pivot columns of A.

Example 4. Find a basis for Col(A) with

A=









1 2 0 4
2 4 −1 3
3 6 2 22

4 8 0 16









.

Solution.








1 2 0 4
2 4 −1 3
3 6 2 22

4 8 0 16









 









1 2 0 4
0 0 −1 −5
0 0 2 10

0 0 0 0









 









1 2 0 4
0 0 −1 −5
0 0 0 0
0 0 0 0









The pivot columns are the first and third.

Hence, a basis for Col(A) is















1

2

3

4









,









0

−1

2

0















.

Warning: For the basis of Col(A), you have to take the columns of A, not the columns
of an echelon form.

Row operations do not preserve the column space.

[For instance,
[

1

0

]

>

R1↔R2
[

0

1

]

have different column spaces (of the same dimension).]
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Review

• {v1,
 ,vp} is a basis of V if the vectors span V and are independent.

• To obtain a basis for Nul(A), solve Ax=0:
[

3 6 6 3
6 12 15 0

]

>

RREF
[

1 2 0 5
0 0 1 −2

]

x=









−2x2− 5x4

x2

2x4

x4









= x2









−2
1
0
0









+ x4









−5
0
2
1









Hence,









−2

1

0

0









,









−5

0

2

1









form a basis for Nul(A).

• To obtain a basis for Col(A), take the pivot columns of A.








1 2 0 4
2 4 −1 3
3 6 2 22

4 8 0 16









>









1 2 0 4
0 0 −1 −5
0 0 0 0
0 0 0 0









Hence,









1

2

3

4









,









0

−1

2

0









form a basis for Col(A).

• Row operations do not preserve the column space.

For instance,
[

1

0

]

>

R1↔R2
[

0

1

]

.

• On the other hand: row operations do preserve the null space.

Why? Recall why/that we can operate on rows to solve systems like Ax=0!

Dimension of Col(A) and Nul(A)

Definition 1. The rank of a matrix A is the number of its pivots.

Theorem 2. Let A be an m×n matrix of rank r. Then:

• dimCol(A) = r

Why? A basis for Col(A) is given by the pivot columns of A.

• dimNul(A) =n− r is the number of free variables of A

Why? In our recipe for a basis for Nul(A), each free variable corresponds to an element in the
basis.

• dimCol(A) + dimNul(A)=n

Why? Each of the n columns either contains a pivot or corresponds to a free variable.
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The four fundamental subspaces

Row space and left null space

Definition 3.

• The row space of A is the column space of AT .

Col(AT) is spanned by the columns of AT and these are the rows of A.

• The left null space of A is the null space of AT .

Why “left”? A vector x is in Nul(AT) if and only if AT
x=0.

Note that AT
x=0� (AT

x)T =x
TA=0

T .

Hence, x is in Nul(AT ) if and only if x
TA=0.

Example 4. Find a basis for Col(A) and Col(AT) where

A=









1 2 0 4
2 4 −1 3
3 6 2 22

4 8 0 16









.

Solution. We know what to do for Col(A) from an echelon form of A, and we could
likewise handle Col(AT) from an echelon form of AT .

But wait!

Instead of doing twice the work, we only need an echelon form of A:









1 2 0 4
2 4 −1 3
3 6 2 22

4 8 0 16









 









1 2 0 4
0 0 −1 −5
0 0 2 10

0 0 0 0









Armin Straub
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







1 2 0 4
0 0 −1 −5
0 0 0 0
0 0 0 0









=B

Hence, the rank of A is 2.

A basis for Col(A) is









1

2

3

4









,









0

−1

2

0









.

Recall that Col(A)� Col(B). That’s because we performed row operations.

However, the row spaces are the same! Col(AT) =Col(BT)

The row space is preserved by elementary row operations.

In particular: a basis for Col(AT) is given by









1

2

0

4









,









0

0

−1

−5









.

Theorem 5. (Fundamental Theorem of Linear Algebra, Part I)

Let A be an m×n matrix of rank r.

• dimCol(A)= r (subspace of Rm)

• dimCol(AT)= r (subspace of Rn)

• dimNul(A)=n− r (subspace of Rn) (# of free variables of A)

• dimNul(AT)=m− r (subspace of Rm)

In particular:

The column and row space always have the same dimension!

In other words, A and AT have the same rank. [i.e. same number of pivots]

Easy to see for a matrix in echelon form




2 1 3 0
0 0 1 2
0 0 0 7



,

but not obvious for a random matrix.
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Linear transformations

Throughout, V and W are vector spaces.

Definition 6. A map T :V →W is a linear transformation if

T (cx+ dy)= cT (x)+ dT (y) for all x, y in V and all c, d in R.

In other words, a linear transformation respects addition and scaling:

• T (x+ y)=T (x)+T (y)

• T (cx)= cT (x)

It also sends the zero vector in V to the zero vector in W :

• T (0)=0 [because T (0)=T (0 ·0)= 0 ·T (0) =0]

Example 7. Let A be an m×n matrix.

Then the map T (x)=Ax is a linear transformation T :Rn→R
m.

Why?

Because matrix multiplication is linear:

A(cx+ dy)= cAx+ dAy

The LHS is T (cx+ dy) and the RHS is cT (x)+ dT (y).

Example 8. Let Pn be the vector space of all polynomials of degree at most n. Consider
the map T :Pn→Pn−1 given by

T (p(t))=
d

dt
p(t).

This map is linear! Why?

Because differentiation is linear:
d

dt
[ap(t) + bq(t)] = a

d

dt
p(t)+ b

d

dt
q(t)

The LHS is T (ap(t)+ bq(t)) and the RHS is aT (p(t))+ bT (q(t)).

Representing linear maps by matrices

Let x1,
 ,xn be a basis for V .

A linear map T :V →W is determined by the values T (x1),
 , T (xn).
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Why?

Take any v in V .

It can be written as v= c1x1+
 + cnxn because {x1,
 ,xn} is a basis and hence spans V .

Hence, by the linearity of T ,

T (v)=T (c1x1+
 + cnx) = c1T (x1) +
 + cnT (xn).

Definition 9. (From linear maps to matrices)

Let x1,
 ,xn be a basis for V , and y1,
 , ym a basis for W .

The matrix representing T with respect to these bases

• has n columns (one for each of the xj),

• the j-th column has m entries a1,j ,
 , am,j determined by

T (xj)= a1,jy1+
 + am,jym.

Example 10. Let V =R
2 and W =R

3. Let T be the linear map such that

T

([

1
0

])

=





1
2
3



, T

([

0
1

])

=





4
0
7



.

What is the matrix A representing T with respect to the standard bases?

Solution. The standard bases are

[

1

0

]

x1

,
[

0

1

]

x2

for R2,





1

0

0





y1

,





0

1

0





y2

,





0

0

1





y3

for R3.

T (x1) =





1
2
3



=1





1
0
0



+2





0
1
0



+3





0
0
1





= 1y1+2y2+3y3

� A=





1 ∗
2 ∗
3 ∗





T (x2) =





4
0
7



=4y1+0y2+7y3

� A=





1 4
2 0
3 7





Armin Straub
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(We did not have time yet to discuss the next example in class, but it will be helpful if
your discussion section already meets Tuesdays.)

Example 11. As in the previous example, let V =R
2 and W =R

3. Let T be the (same)
linear map such that

T

([

1
0

])

=





1
2
3



, T

([

0
1

])

=





4
0
7



.

What is the matrix B representing T with respect to the following bases?

[

1

1

]

x1

,
[

−1

2

]

x2

for R2,





1

1

1





y1

,





0

1

0





y2

,





0

0

1





y3

for R3.

Solution. This time:

T (x1) = T

([

1
1

])

=T

([

1
0

])

+T

([

0
1

])

=





1
2
3



+





4
0
7



=





5
2
10





= 5





1
1
1



− 3





0
1
0



+5





0
0
1





can you see it?
otherw ise: do it!

� B =





5 ∗
−3 ∗
5 ∗





T (x2) = T

([

−1
2

])

=−T

([

1
0

])

+2T

([

0
1

])

= −





1
2
3



+2





4
0
7



=





7
−2
11





= 7





1
1
1



− 9





0
1
0



+4





0
0
1





� B =





5 7
−3 −9
5 4





Tedious, even in this simple example! (But we can certainly do it.)

A matrix representing T encodes in column j the coefficients of T (xj) expressed as
a linear combination of y1,
 , ym.
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Practice problems

Example 12. Suppose A=
[

1 2 3 4 1

2 4 7 8 1

]

. Find the dimensions and a basis for all four

fundamental subspaces of A.

Example 13. Suppose A is a 5× 5 matrix, and that v is a vector in R
5 which is not

a linear combination of the columns of A.

What can you say about the number of solutions to Ax= 0?

Solution. Stop reading, unless you have thought about the problem!

Existence of such a v means that the 5 columns of A do not span R
5.

Hence, the columns are not independent.

In other words, A has at most 4 pivots.

So, at least one free variable.

Which means that Ax=0 has infinitely many solutions.
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Linear transformations

• A map T :V →W between vector spaces is linear if

◦ T (x+ y)=T (x)+ T (y)

◦ T (cx)= cT (x)

• Let A be an m×n matrix.

T :Rn
→R

m defined by T (x)=Ax is linear.

• T :Pn→Pn−1 defined by T (p(t))= p′(t) is linear.

• The only linear maps T :R→R are T (x)=αx.

Recall that T (0)= 0 for linear maps.

• Linear maps T :R2
→R are of the form T

(

x
y

)

=αx+ βy.

For instance, T (x, y)= xy is not linear: T

(

2x
2y

)

� 2T (x, y)

Example 1. Let V =R
2 and W =R

3. Let T be the linear map such that

T

([

1
1

])

=





1
0
4



, T

([

−1
1

])

=





1
−2
0



.

• What is T
(

[

0

4

]

)

?

[

0

4

]

=2
[

1

1

]

+2
[

−1

1

]

T
(
[

0

4

]
)

=T
(

2
[

1

1

]

+2
[

−1

1

]
)

=2T
(
[

1

1

]
)

+2T
(
[

−1

1

]
)

=





2

0

8



+





2

−4

0



=





4

−4

8





Let x1,
 ,xn be a basis for V .

A linear map T :V →W is determined by the values T (x1),
 , T (xn).

Why?

Take any v in V .

Write v= c1x1+
 + cnxn. (Possible, because {x1,
 ,xn} spans V .)

By linearity of T ,

T (v)=T (c1x1+
 + cnx) = c1T (x1) +
 + cnT (xn).
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Important geometric examples

We consider some linear maps R
2
→ R

2, which are defined by matrix multiplication,
that is, by x� Ax.

In fact: all linear maps R
n→R

m are given by x� Ax, for some matrix A.

Example 2.

The matrix A=

[

c 0
0 c

]


 gives the map x� cx, i.e.


 stretches every vector in R
2 by the same factor c.

Example 3.

The matrix A=

[

0 1
1 0

]


 gives the map
[

x

y

]

�

[

y

x

]

, i.e.


 reflects every vector in R2 through the line y=x.

Example 4.

The matrix A=

[

1 0
0 0

]


 gives the map
[

x

y

]

�

[

x

0

]

, i.e.


 projects every vector inR
2 through onto the x-axis.
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Example 5.

The matrix A=

[

0 −1
1 0

]


 gives the map
[

x

y

]

�

[

−y

x

]

, i.e.


 rotates every vector in R
2 counter-clockwise by

90
◦.

Representing linear maps by matrices

Definition 6. (From linear maps to matrices)

Let x1,
 ,xn be a basis for V , and y1,
 , ym a basis for W .

The matrix representing T with respect to these bases

• has n columns (one for each of the xj),

• the j-th column has m entries a1,j ,
 , am,j determined by

T (xj)= a1,jy1+
 + am,jym.

Example 7.

Recall the map T given by
[

x

y

]

�

[

y

x

]

.

(reflects every vector in R
2 through the line y= x)

• Which matrix A represents T with respect to the
standard bases?

• Which matrix B represents T with respect to the

basis
[

1

1

]

,
[

−1

1

]

?

Solution.

• T
(

[

1

0

]

)

=
[

0

1

]

. Hence, A=
[

0 ∗

1 ∗

]

.

T
(

[

0

1

]

)

=
[

1

0

]

. Hence, A=
[

0 1

1 0

]

.

If a linear map T :Rn
→R

m is represented by the matrix A with respect to the
standard bases, then T (x)=Ax.
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Matrix multiplication corresponds to function composition!

That is, if T1, T2 are represented by A1, A2, then T1(T2(x))= (A1A2)x.

• T
(

[

1

1

]

)

=
[

1

1

]

=1
[

1

1

]

+0
[

−1

1

]

. Hence, B=
[

1 ∗

0 ∗

]

.

T
(

[

−1

1

]

)

=
[

1

−1

]

=0
[

1

1

]

−

[

−1

1

]

. Hence, B=
[

1 0

0 −1

]

.

Example 8. Let T :R2
→R

3 be the linear map such that

T

([

1
0

])

=





1
2
3



, T

([

0
1

])

=





4
0
7



.

What is the matrix B representing T with respect to the following bases?

[

1

1

]

x1

,
[

−1

2

]

x2

for R2,





1

1

1





y1

,





0

1

0





y2

,





0

0

1





y3

for R3.

Solution. This time:

T (x1) = T

([

1
1

])

=T

([

1
0

])

+T

([

0
1

])

=





1
2
3



+





4
0
7



=





5
2
10





= 5





1
1
1



− 3





0
1
0



+5





0
0
1





can you see it?
otherw ise: do it!

� B =





5 ∗
−3 ∗
5 ∗





T (x2) = T

([

−1
2

])

=−T

([

1
0

])

+2T

([

0
1

])

= −





1
2
3



+2





4
0
7



=





7
−2
11





= 7





1
1
1



− 9





0
1
0



+4





0
0
1





� B =





5 7
−3 −9
5 4





Tedious, even in this simple example! (But we can certainly do it.)

A matrix representing T encodes in column j the coefficients of T (xj) expressed as
a linear combination of y1,
 , ym.
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Practice problems

Example 9. Let T :R2
→R2 be the map which rotates a vector counter-clockwise by

angle θ.

• Which matrix A represents T with respect to the standard bases?

• Verify that T (x)=Ax.

Solution. Only keep reading if you need a hint!

The first basis vector
[

1

0

]

gets send to
[

cosθ

sinθ

]

.

Hence, the first column of A is 
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Review

• A linear map T :V →W satisfies T (cx+ dy)= cT (x)+ dT (y).

• T :Rn→R
m defined by T (x)=Ax is linear. (A an m ×n matrix)

◦ A is the matrix representing T w.r.t. the standard bases

For instance: T (e1) =Ae1=1st column of A e
1
=











1

0




0











• Let x1,
 ,xn be a basis for V , and y1,
 , ym a basis for W .

◦ The matrix representing T w.r.t. these bases encodes in column j the coefficients of T (xj)
expressed as a linear combination of y1,
 , ym.

◦ For instance: let T :R3
→R

3 be reflection through the x-y-plane, that is, (x, y, z)� (x, y,
−z).

The matrix representing T w.r.t. the basis





1

1

1



,





0

1

0



,





0

0

1



 is





1 0 0

0 1 0

−2 0 −1



.

T

(





1

1

1





)

=





1

1

−1



=





1

1

1



+0





0

1

0



− 2





0

0

1





T

(





0

1

0





)

=





0

1

0



, T

(





0

0

1





)

=





0

0

−1





Example 1. Let T :P3→P2 be the linear map given by

T (p(t))=
d

dt
p(t).

What is the matrix A representing T with respect to the standard bases?

Solution. The bases are

1, t, t2, t3 for P3, 1, t, t2 for P2.

The matrix A has 4 columns and 3 rows.
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The first column encodes T (1)= 0 and hence is





0

0

0



.

For the second column, T (t)= 1 and hence it is





1

0

0



.

For the third column, T (t2)= 2t and hence it is





0

2

0



.

For the last column, T (t3) = 3t2 and hence it is





0

0

3



.

In conclusion, the matrix representing T is

A=





0 1 0 0
0 0 2 0
0 0 0 3



.

Note: By the way, what is the null space of A?

The null space has basis









1

0

0

0









. The corresponding polynomial is p(t)= 1.

No surprise here: differentation kills precisely the constant polynomials.

Note: Let us differentiate 7t3− t+3 using the matrix A.

• First: 7t3− t+3 w.r.t. standard basis:









3

−1

0

7









.

•





0 1 0 0

0 0 2 0

0 0 0 3













3

−1

0

7









=





−1

0

21





•





−1

0

21



 in the standard basis is −1+ 21t2.
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Orthogonality

The inner product and distances

Definition 2. The inner product (or dot product) of v, w in R
n:

v ·w = v
T
w= v1w1+
 + vnwn.

Because we can think of this as a special case of the matrix product, it satisfies the basic rules like
associativity and distributivity.

In addition: v ·w=w ·v.

Example 3. For instance,





1
2
3



·





1
−1
−2



 = [ 1 2 3 ]





1
−1
−2



=1− 2− 6=−7.

Definition 4.

• The norm (or length) of a vector v in Rn is

‖v‖ = v ·v√
= v1

2+
 + vn
2

√

.

This is the distance to the origin.

• The distance between points v and w in Rn is

dist(v,w) = ‖v−w‖. v

w

v −w

Example 5. For instance, in R
2,

dist

([

x1

y1

]

,

[

x2

y2

])

=

∥

∥

∥

∥

[

x1− x2

y1− y2

]
∥

∥

∥

∥

= (x1− x2)
2+(y1− y2)

2
√

.
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Orthogonal vectors

Definition 6. v and w in R
n are orthogonal if

v ·w=0.

How is this related to our understanding of right angles?

Pythagoras:

v and w are orthogonal

� ‖v‖2+ ‖w‖2= ‖v−w‖2

� v · v+w ·w=(v−w) · (v−w)
�

v·v−2v·w+w·w

� v ·w=0 v

w

v −w

Example 7. Are the following vectors orthogonal?

(a)
[

1

2

]

,
[

−2

1

]

[

1

2

]

·
[

−2

1

]

=1 · (−2)+ 2 · 1=0. So, yes, they are orthogonal.

(b)





1

2

1



,





−2

1

1









1

2

1



·




−2

1

1



=1 · (−2)+ 2 · 1+1 · 1= 1. So not orthogonal.
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Review

• v ·w= v
T
w= v1w1+
 + vnwn, the inner product of v, w in R

n

◦ Length of v: ‖v‖= v ·v√
= v1

2+
 + vn
2

√

◦ Distance between points v and w: ‖v−w‖
• v and w in R

n are orthogonal if v ·w=0.

◦ This simple criterion is equivalent to Pythagoras theorem.

Example 1. The vectors





1

0

0



,





0

1

0



,





0

0

1





• are orthogonal to each other, and

• have length 1.

We are going to call such a basis orthonormal soon.

Theorem 2. Suppose that v1,
 ,vn are nonzero and (pairwise) orthogonal. Then v1,
 ,

vn are independent.

Proof. Suppose that

c1v1+
 + cnvn=0.

Take the dot product of v1 with both sides:

0 = v1 · (c1v1+
 + cnvn)

= c1v1 ·v1+ c2v1 ·v2+
 + cnv1 ·vn

= c1v1 ·v1= c1‖v1‖2

But ‖v1‖� 0 and hence c1=0.

Likewise, we find c2=0, 
 , cn=0. Hence, the vectors are independent. �

Example 3. Let us consider A=





1 2

2 4

3 6



.

Find Nul(A) and Col(AT). Observe!

Solution.

Nul(A) = span
{

[

−2

1

]

}

can you see it?
if not, do it!

Col(AT)= span
{

[

1

2

]

}

The two basis vectors are orthogonal!
[

−2

1

]

·
[

1

2

]

=0
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Example 4. Repeat for A=





1 2 1

2 4 0

3 6 0



.

Solution.




1 2 1
2 4 0
3 6 0



  





1 2 1
0 0 −2
0 0 −3





>

RREF





1 2 0
0 0 1
0 0 0





Nul(A) = span

{





−2

1

0





}

Col(AT)= span

{





1

2

0



,





0

0

1





}

The 2 vectors form a basis.

Again, the vectors are orthogonal!




−2
1
0





·





1
2
0



=0,





−2
1
0





·





0
0
1



=0.

Note: Because





−2

1

0



 is orthogonal to both basis vectors, it is orthogonal to every vector

in the row space.

Vectors in Nul(A) are orthogonal to vectors in Col(AT).

The fundamental theorem, second act

Definition 5. Let W be a subspace of Rn, and v in R
n.

• v is orthogonal to W , if v ·w=0 for all w in W .

(� v is orthogonal to each vector in a basis of W )

• Another subspace V is orthogonal to W , if every vector in V is orthogonal to W .

• The orthogonal complement of W is the space W⊥ of all vectors that are orthog-
onal to W .

Exercise: show that the orthogonal complement is indeed a vector space.

Example 6. In the previous example, A=





1 2 1

2 4 0

3 6 0



.

We found that

Nul(A)= span











−2
1
0











, Col(AT)= span











1
2
0



,





0
0
1










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are orthogonal subspaces.

Indeed, Nul(A) and Col(AT) are orthogonal complements.

Why? Because





−2

1

0



,





1

2

0



,





0

0

1



 are orthogonal, hence independent, and hence a basis of all of R3.

Remark 7. Recall that, for an m× n matrix A, Nul(A) lives in Rn and Col(A) lives
in Rm. Hence, they cannot be related in a similar way.

In the previous example, they happen to be both subspaces of R3:

Nul(A)= span











−2
1
0











, Col(A)= span











1
2
3



,





1
0
0











But these spaces are not orthogonal:





−2

1

0





·





1

0

0





� 0

Theorem 8. (Fundamental Theorem of Linear Algebra, Part I)

Let A be an m×n matrix of rank r.

• dimCol(A)= r (subspace of Rm)

• dimCol(AT)= r (subspace of Rn)

• dimNul(A)=n− r (subspace of Rn)

• dimNul(AT)=m− r (subspace of Rm)

Theorem 9. (Fundamental Theorem of Linear Algebra, Part II)

• Nul(A) is orthogonal to Col(AT). (both subspaces of Rn)

Note that dim Nul(A) + dim Col(AT)=n.

Hence, the two spaces are orthogonal complements in R
n.

• Nul(AT) is orthogonal to Col(A).

Again, the two spaces are orthogonal complements.
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Review

• v and w in Rn are orthogonal if v ·w= v1w1+
 + vnwn=0.

◦ This simple criterion is equivalent to Pythagoras’ theorem.

◦ Nonzero orthogonal vectors are independent.

• Nul









1 2
2 4
3 6







= span

{[

2
−1

]}

, Col









1 2
2 4
3 6





T


= span

{[

1
2

]}

• Fundamental Theorem of Linear Algebra: (A an m×n matrix)

◦ Nul(A) is orthogonal to Col(AT). (both subspaces of Rn)

Moreover, dim Col(AT)
�

= r (rank of A)

+ dim Nul(A)
�

= n−r

=n

Hence, they are orthogonal complements in R
n.

◦ Nul(AT) and Col(A) are orthogonal complements. (in R
m)

Nul(A) is orthogonal to Col(AT).

Why? Suppose that x is in Nul(A). That is, Ax=0.

But think about what Ax=0 means (row-column rule).

It means that the inner product of every row with x is zero.

But that implies that x is orthogonal to the row space.

Example 1. Find all vectors orthogonal to





1

1

1



 and





0

1

1



.

Solution. (FTLA, no thinking) In other words:

find the orthogonal complement of Col

(





1 0

1 1

1 1





)

.

FTLA: this is Nul

(





1 0

1 1

1 1





T
)

=Nul
(

[

1 1 1

0 1 1

]

)

,

which has basis:





0

−1

1



.

span

{





0

−1

1





}

are the vectors orthogonal to





1

1

1



 and





0

1

1



.
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Solution. (a little thinking) The FTLA is not magic!




1
1
1



·x=0 and





0
1
1



·x=0 �

[

1 1 1
0 1 1

]

x=

[

0
0

]

� x in Nul

([

1 1 1
0 1 1

])

This is the same null space we obtained from the FTLA.

Example 2. Let V =

{





a

b

c



 : a+ b=2c

}

.

Find a basis for the orthogonal complement of V .

Solution. (FTLA, no thinking) We note that V =Nul([ 1 1 −2 ]).

FTLA: the orthogonal complement is Col([ 1 1 −2 ]T).

Basis for the orthogonal complement:





1

1

−2





Solution. (a little thinking) a+ b=2c�





a

b

c



·





1

1

−2



=0.

So: V is actually defined as the orthogonal complement of span

{





1

1

−2





}

.

A new perspective on Ax= b

Ax= b is solvable

� b is in Col(A) (“direct” approach)

� b is orthogonal to Nul(AT) (“indirect” approach)

The indirect approach means: if yTA=0 then yTb=0.
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Example 3. Let A=





1 2

3 1

0 5



. For which b does Ax= b have a solution?

Solution. (old)




1 2 b1

3 1 b2

0 5 b3





 





1 2 b1

0 −5 −3b1+ b2

0 5 b3





 





1 2 b1

0 −5 −3b1+ b2

0 0 −3b1+ b2+ b3





So, Ax= b is consistent� −3b1+ b2+ b3=0.

Solution. (new) Ax= b solvable� b orthogonal to Nul(AT)

to find Nul(AT):

[

1 3 0
2 1 5

]

>

RREF
[

1 0 3
0 1 −1

]

We conclude that Nul(AT) has basis





−3

1

1



.

Ax= b is solvable� b ·





−3

1

1



=0. As above!

Motivation

Example 4. Not all linear systems have solutions.

In fact, for many applications, data needs to be fitted and there is
no hope for a perfect match.

For instance, Ax= b with

[

1 2
2 4

]

x=

[

−1
2

]

has no solution:

•

[

−1

2

]

is not in Col(A)= span
{

[

1

2

]

}

• Instead of giving up, we want the x which makes Ax and b as
close as possible.

Ax

b

• Such x is characterized by Ax being orthogonal to the error b−Ax (see picture!)
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Application: directed graphs

1© 2©

3© 4©

1

2 3 4

5

• Graphs appear in network analysis
(e.g. internet) or circuit analysis.

• arrow indicates direction of flow

• no edges from a node to itself

• at most one edge between nodes

Definition 5. Let G be a graph with m edges and n nodes.

The edge-node incidence matrix of G is the m×n matrix A with

Ai,j =







−1, if edge i leaves node j ,

+1, if edge i enters node j ,

0, otherwise.

Example 6. Give the edge-node incidence matrix of our graph.

Solution.

1© 2©

3© 4©

1

2 3 4

5

A=













−1 1 0 0
−1 0 1 0
0 −1 1 0
0 −1 0 1
0 0 −1 1













• each column represents a node

• each row represents an edge
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Review

• A graph G can be encoded by the edge-node incidence matrix:

1© 2©

3© 4©

1

2 3 4

5

A=













−1 1 0 0
−1 0 1 0
0 −1 1 0
0 −1 0 1
0 0 −1 1













◦ each column represents a node

◦ each row represents an edge

• If G has m edges and n nodes, then A is the m×n matrix with

Ai,j=







−1, if edge i leaves node j ,

+1, if edge i enters node j ,

0, otherwise.

Meaning of the null space

The x in Ax is assigning values to each node.

You may think of assigning potentials to each node.













−1 1 0 0
−1 0 1 0
0 −1 1 0
0 −1 0 1
0 0 −1 1





















x1

x2

x3

x4









=













−x1+x2

−x1+x3

−x2+x3

−x2+x4

−x3+x4













1© 2©

3© 4©

1

2 3 4

5

So: Ax=0

� nodes connected by an edge are assigned the same value
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For our graph: Nul(A) has basis









1

1

1

1









.

This always happens as long as the graph is connected.

Example 1. Give a basis for Nul(A) for the following graph.

Solution. If Ax = 0 then x1 = x3 (connected by edge) and x2 = x4

(connected by edge).

Nul(A) has the basis:









1

0

1

0









,









0

1

0

1









.

Just to make sure: the edge-node incidence matrix is:

A=
[

−1 0 1 0

0 −1 0 1

]

1© 2©

3© 4©

In general:

dimNul(A) is the number of connected subgraphs.

For large graphs, disconnection may not be apparent visually.

But we can always find out by computing dim Nul(A) using Gaussian elimination!

Meaning of the left null space

The y in y
TA is assigning values to each edge.

You may think of assigning currents to each edge.

A=













−1 1 0 0
−1 0 1 0
0 −1 1 0
0 −1 0 1
0 0 −1 1













, AT =









−1 −1 0 0 0
1 0 −1 −1 0
0 1 1 0 −1
0 0 0 1 1

















−1 −1 0 0 0

1 0 −1 −1 0

0 1 1 0 −1

0 0 0 1 1





















y1

y2

y3

y4

y5













=









−y1− y2

y1− y3− y4

y2+ y3− y5

y4+ y5









1© 2©

3© 4©

1

2 3 4

5
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So: AT
y= 0

� at each node, (directed) values assigned to edges add to zero

When thinking of currents, this is Kirchhoff’s first law.

(at each node, incoming and outgoing currents balance)

What is the simplest way to balance current?

Assign the current in a loop!

Here, we have two loops: edge1, edge3,−edge2 and edge3, edge5,−edge4.

Correspondingly,













1

−1

1

0

0













and













0

0

1

−1

1













are in Nul(AT). Check!

Example 2. Suppose we did not “see” this.

Let us solve AT
y= 0 for our graph:









−1 −1 0 0 0
1 0 −1 −1 0
0 1 1 0 −1
0 0 0 1 1









>

RREF









1 0 −1 0 1
0 1 1 0 −1
0 0 0 1 1
0 0 0 0 0









The parametric solution is













y3− y5

−y3+ y5

y3

−y5

y5













.

So, a basis for Nul(AT) is













1

−1

1

0

0













,













−1

1

0

−1

1













.

1© 2©

3© 4©

1

2 3 4

5

Observe that these two basis vectors correspond to loops.

Note that we get the “simpler” loop













0

0

1

−1

1













as













1

−1

1

0

0













+













−1

1

0

−1

1













.

In general:

dimNul(AT) is the number of (independent) loops.

For large graphs, we now have a nice way to computationally find all loops.
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Practice problems

Example 3. Give a basis for Nul(AT) for the following graph.
1© 2©

3© 4©

Example 4. Consider the graph with edge-node incidence matrix

A=









1 −1 0 0

−1 0 1 0

0 −1 1 0

0 1 0 −1









.

(a) Draw the corresponding directed graph with numbered edges and nodes.

(b) Give a basis for Nul(A) and Nul(AT) using properties of the graph.

Armin Straub
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Solutions to practice problems

Example 5. Give a basis for Nul(AT) for the following graph.

Solution. This graph contains no loops,

so Nul(AT)= {0}.

Nul(AT) has the empty set as basis (no basis vectors needed).

For comparison: the edge-node incidence matrix

A=

[

−1 0 1 0
0 −1 0 1

]

indeed has Nul(AT)= {0}.

1© 2©

3© 4©

Example 6. Consider the graph with edge-node incidence
matrix

A=









1 −1 0 0

−1 0 1 0

0 −1 1 0

0 1 0 −1









.

Give a basis for Nul(A) and Nul(AT).

1© 2©

3© 4©

1

2 3 4

Solution.

If Ax=0, then x1=x2=x3=x4 (all connected by edges).

Nul(A) has the basis:









1

1

1

1









.

The graph is connected, so only 1 connected subgraph and dim Nul(A)= 1.

The graph has one loop: edge1, edge2,−edge3

Assign values y1=1, y2=1, y3=−1 along the edges of that loop.

Nul(AT) has the basis:









1

1

−1

0









.

The graph has 1 loop, so dim Nul(AT)= 1.

Armin Straub
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Review for Midterm 2

• As of yet unconfirmed:

◦ final exam on Friday, December 12, 7–10pm

◦ conflict exam on Monday, December 15, 7–10pm

Directed graphs

• Go from directed graph to edge-node incidence matrix A and vice versa.

• Basis for Nul(A) from connected subgraphs.

For each connected subgraph, get a basis vector x that assigns 1 to all nodes in that subgraph,
and 0 to all other nodes.

• Basis for Nul(AT) from (independent) loops.

For each (independent) loop, get a basis vector y that assigns 1 and −1 (depending on direction)
to the edges in that loop, and 0 to all other edges.

Example 1.

Basis for Nul(A):









1
1
1
1









Basis for Nul(AT):













1
−1
1
0
0













,













0
0
−1
1
−1













1© 2©

3© 4©

1

2 3 4

5

Fundamental notions

• Vectors v1,
 ,vn are independent if the only linear relation

c1v1+
 + cnvn= 0

is the one with c1= c2=
 = cn=0.

How to check for independence?

The columns of a matrix A are independent� Nul(A)= {0}.

• Vectors v1,
 ,vn in V are a basis for V if

◦ they span V , that is V = span{v1,
 ,vn}, and

◦ they are independent.

In that case, V has dimension n.

• Vectors v ,w in R
m are orthogonal if v ·w= v1w1+
 + vmwm=0.

Armin Straub
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Subspaces

• From an echelon form of A, we get bases for:

− Nul(A) — by solving Ax=0

− Col(A) — by taking the pivot columns of A

− Col(AT) — by taking the nonzero rows of the echelon form

Example 2.

A=









1 2 0 4
2 4 −1 3
3 6 2 22

4 8 0 16









>

RREF









1 2 0 4
0 0 1 5
0 0 0 0
0 0 0 0









Basis for Col(A):









1
2
3
4









,









0
−1
2
0









Basis for Col(AT):









1
2
0
4









,









0
0
1
5









Basis for Nul(A):









−2
1
0
0









,









−4
0
−5
1









Dimension of Nul(AT): 2

• The solutions to Ax= b are given by xp+Nul(A).

• The fundamental theorem states that

◦ Nul(A) and Col(AT) are orthogonal complements

So: dim Nul(A)+ dim Col(AT)=n (number of columns of A)

◦ Nul(AT) and Col(A) are orthogonal complements

So: dim Nul(AT)+ dim Col(A)=m (number of rows of A)

◦ In particular, if r= rank(A) (nr of pivots):

− dimCol(A) = r

− dimCol(AT)= r

− dimNul(A) =n− r

− dimNul(AT)=m− r

Example 3. Consider the following subspaces of R4:

(a) V =















a

b

c

d









: a+2b=0, a+ b+ d=0







Armin Straub
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(b) V =















a+ b− c

b

2a+3c
c









: a, b, c in R







In each case, give a basis for V and its orthogonal complement.

Try to immediately get an idea what the dimensions are going to be!

Solution.

• First step: express these subspaces as one of the four subspaces of a matrix.

(a) V =Nul
(

[

1 2 0 0
1 1 0 1

]

)

(b) V =Col













1 1 −1
0 1 0
2 0 3
0 0 1













• Give a basis for each.

(a) row reductions:
[

1 2 0 0
1 1 0 1

]

 

[

1 2 0 0
0 −1 0 1

]

 

[

1 0 0 2
0 1 0 −1

]

basis for V :









0
0
1
0









,









−2
1
0
1









(b) row reductions:









1 1 −1
0 1 0
2 0 3
0 0 1









 









1 1 −1
0 1 0
0 −2 5
0 0 1









(no need to continue; we already see that the columns are independent)

basis for V :









1
0
2
0









,









1
1
0
0









,









−1
0
3
1









• Use the fundamental theorem to find bases for the orthogonal complements.

(a) V ⊥=Col
(

[

1 2 0 0
1 1 0 1

]

T
)

note the two rows are clearly independent.

basis for V ⊥:









1
2
0
0









,









1
1
0
1









(b) V ⊥=Nul













1 1 −1
0 1 0
2 0 3
0 0 1









T


=Nul

(





1 0 2 0
1 1 0 0
−1 0 3 1





)

row reductions:





1 0 2 0
1 1 0 0
−1 0 3 1



 





1 0 2 0
0 1 −2 0
0 0 5 1



 





1 0 0 −2/5
0 1 0 2/5
0 0 1 1/5





basis for V ⊥:









2/5
−2/5
−1/5

1









Armin Straub
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Example 4. What does it mean for Ax= b if Nul(A)= {0}?

Solution. It means that if there is a solution, then it is unique.

That’s because all solutions to Ax= b are given by xp+Nul(A).

Linear transformations

Example 5. Let T :R2→R
3 be the linear map represented by the matrix





1 0
2 1
3 0





with respect to the bases
[

0
1

]

,
[

1
−1

]

of R2 and





1
1
0



,





1
0
1



,





0
1
1



 of R3.

(a) What is T
(

[

1
1

]

)

?

(b) Which matrix represents T with respect to the standard bases?

Solution.

The matrix tells us that:

T

([

0
1

])

= 1





1
1
0



+2





1
0
1



+3





0
1
1



=





3
4
5





T

([

1
−1

])

= 0





1
1
0



+1





1
0
1



+0





0
1
1



=





1
0
1





(a) Note that
[

1
1

]

=2 ·
[

0
1

]

+
[

1
−1

]

.

Hence, T
(

[

1
−1

]

)

=2T
(

[

0
1

]

)

+ T
(

[

1
−1

]

)

=2





3
4
5



+





1
0
1



=





7
8
11



.

(b) Note that
[

1
0

]

=
[

0
1

]

+
[

1
−1

]

.

Hence, T
(

[

1
0

]

)

=T
(

[

0
1

]

)

+ T
(

[

1
−1

]

)

=





3
4
5



+





1
0
1



=





4
4
6



.

We already know that T
(

[

0
1

]

)

=





3
4
5



.

So, T is represented by





4 3
4 4
6 5



 with respect to the standard bases.
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Check your understanding

Think about why each of these statements is true!

• Ax= b has a solution x if and only if b is in Col(A).

That’s because Ax are linear combinations of the columns of A.

• A and AT have the same rank.

Recall that the rank of A (number of pivots of A) equals dim Col(A).

So this is another way of saying that dim Col(A)= dim Col(AT).

• The columns of an n×n matrix are independent if and only if the rows are.

Let r be the rank of A, and let A be m×n for now.

The columns are independent� r=n (so that dim Nul(A)= 0).

But also: the rows are independent� r=m.

In the case m=n, these two conditions are equivalent.

• Ax= b has a solution x if and only if b is orthogonal to Nul(AT).

This follows from “Ax= b has a solution x if and only if b is in Col(A)”

together with the fundamental theorem, which says that Col(A) is the orthogonal complement

of Nul(AT).

• The rows of A are independent if and only if Nul(AT)= {0}.

Recall that elements of Nul(A) correspond to linear relations between the columns of A.

Likewise, elements of Nul(AT) correspond to linear relations between the rows of A.

Armin Straub
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• We can deal with “complicated” linear systems, but what to do if there is no solutions
and we want a “best” approximate solution?

This is important for many applications, including fitting data.

• Suppose Ax= b has no solution. This means b is not in Col(A).

Idea: find “best” approximate solution by replacing b with its projection onto Col(A).

• Recall: if v1,
 ,vn are (pairwise) orthogonal:

v1 · (c1v1+
 + cnvn) = c1v1 · v1

Implies: the v1,
 ,vn are independent (unless one is the zero vector)

Orthogonal bases

Definition 1. A basis v1, 
 , vn of a vector space V is an orthogonal basis if the
vectors are (pairwise) orthogonal.

Example 2. The standard basis





1
0
0



,





0
1
0



,





0
0
1



 is an orthogonal basis for R3.

Example 3. Are the vectors





1
−1
0



,





1
1
0



,





0
0
1



 an orthogonal basis for R3?

Solution.

Armin Straub
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



1
−1
0



·





1
1
0



 = 0





1
−1
0



·





0
0
1



 = 0





1
1
0



·





0
0
1



 = 0

So this is an orthogonal basis.

Note that we do not need to check that the three vectors are independent. That follows
from their orthogonality.

Example 4. Suppose v1,
 ,vn is an orthogonal basis of V , and that w is in V . Find
c1,
 , cn such that

w= c1v1+
 + cnvn.

Solution. Take the dot product of v1 with both sides:

v1 ·w = v1 · (c1v1+
 + cnvn)

= c1v1 ·v1+ c2v1 ·v2+
 + cnv1 ·vn

= c1v1 ·v1

Hence, c1=
v1 ·w
v1 ·v1

. In general, cj=
vj ·w
vj ·vj

.

If v1,
 ,vn is an orthogonal basis of V , and w is in V , then

w= c1v1+
 + cnvn with cj=
w ·vj

vj ·vj

.

Example 5. Express





3
7
4



 in terms of the basis





1
−1
0



,





1
1
0



,





0
0
1



.

Solution.




3
7
4



 = c1





1
−1
0



+ c2





1
1
0



+ c3





0
0
1





=





3

7

4



·





1

−1

0









1

−1

0



·





1

−1

0









1
−1
0



+





3

7

4



·





1

1

0









1

1

0



·





1

1

0









1
1
0



+





3

7

4



·





0

0

1









0

0

1



·





0

0

1









0
0
1





=
−4

2





1
−1
0



+
10

2





1
1
0



+
4

1





0
0
1




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Definition 6. A basis v1, 
 , vn of a vector space V is an orthonormal basis if the
vectors are orthogonal and have length 1.

Example 7. The standard basis





1
0
0



,





0
1
0



,





0
0
1



 is an orthonormal basis for R3.

If v1,
 ,vn is an orthonormal basis of V , and w is in V , then

w= c1v1+
 + cnvn with cj =vj ·w.

Example 8. Express





3
7
4



 in terms of the basis





1
0
0



,





0
1
0



,





0
0
1



.

Solution. That’s trivial, of course:




3
7
4



 = 3





1
0
0



+7





0
1
0



+4





0
0
1





But note that the coefficients are




3
7
4



·





1
0
0



=3,





3
7
4



·





0
1
0



=7,





3
7
4



·





0
0
1



=4.

Example 9. Is the basis





1
−1
0



,





1
1
0



,





0
0
1



 orthonormal? If not, normalize the vectors

to produce an orthonormal basis.

Solution.




1
−1
0



 has length





1
−1
0



·




1
−1
0





√

= 2
√
� normalized:

1

2
√





1
−1
0









1
1
0



 has length





1
1
0



·




1
1
0





√

= 2
√
� normalized:

1

2
√





1
1
0









0
0
1



 has length





0
0
1



·




0
0
1





√

=1 � is already normalized:





0
0
1





The corresponding orthonormal basis is
1

2
√





1
−1
0



,
1

2
√





1
1
0



,





0
0
1



.
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Example 10. Express





3
7
4



 in terms of the basis
1

2
√





1
−1
0



,
1

2
√





1
1
0



,





0
0
1



.

Solution.




3
7
4



·
1

2
√





1
−1
0



=
−4

2
√ ,





3
7
4



·
1

2
√





1
1
0



=
10

2
√ ,





3
7
4



·





0
0
1



=4.

Hence, just as in Example 5:




3
7
4



 =
−4

2
√

1

2
√





1
−1
0



+
10

2
√

1

2
√





1
1
0



+4





0
0
1





Orthogonal projections

y

x
x̂

x
⊥

Definition 11. The orthogonal projection of vector x onto
vector y is

x̂=
x · y
y · y y.

• The vector x̂ is the closest vector to x, which is in
span{y}.

• Characterized by: the “error” x⊥= x− x̂ is orthogonal to
span{y}.

• To find the formula for x̂, start with x̂= cy.

(x− x̂) · y=(x− cy) · y=x · y − cy · y @

wanted
0

It follows that c=
x · y
y · y .

x⊥ is also called the component of x orthogonal to y.

Example 12. What is the orthogonal projection of x=
[

−8
4

]

onto y=
[

3
1

]

?

Solution.

x̂=
x · y
y · y y=

−8 · 3+4 · 1
32+12

[

3
1

]

=−2

[

3
1

]

=

[

−6
−2

]

The component of x orthogonal to y is

x− x̂=

[

−8
4

]

−
[

−6
−2

]

=

[

−2
6

]

.

(Note that, indeed
[

−2
6

]

and
[

3
1

]

are orthogonal.)
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Example 13. What are the orthogonal projections of





2
1
1



 onto each of the vectors




1
−1
0



,





1
1
0



,





0
0
1



?

Solution.




2
1
1



 on





1
−1
0



:
2 · 1+ 1 · (−1)+ 1 · 0

12+(−1)2+02





1
−1
0



=
1

2





1
−1
0









2
1
1



 on





1
1
0



:
2 · 1+ 1 · 1+ 1 · 0

12+12+02





1
1
0



=
3

2





1
1
0









2
1
1



 on





0
0
1



:
2 · 0+ 1 · 0+ 1 · 1

02+02+12





0
0
1



=





0
0
1





Note that these sum up to
1

2





1
−1
0



+
3

2





1
1
0



+





0
0
1



=





2
1
1



!

That’s because the three vectors are an orthogonal basis for R3.

Recall: If v1,
 ,vn is an orthogonal basis of V , and w is in V , then

w= c1v1+
 + cnvn with cj=
w ·vj

vj ·vj

.

 w decomposes as the sum of its projections onto each basis vector
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Comments on midterm

Suppose V is a vector space, and you are asked to give a basis.

• CORRECT: V has basis





1

1

0



,





1

0

1





• CORRECT: V has basis

{





1

1

0



,





1

0

1





}

• OK: V = span

{





1

1

0



,





1

0

1





}

(but you really should point out that the two vectors are independent)

• INCORRECT: V =

{





1

1

0



,





1

0

1





}

• INCORRECT: basis=





1 1

1 0

0 1





Review

y

x
x̂

x
⊥

• Orthogonal projection of x onto y:

x̂=
x · y

y · y
y.

“Error” x⊥=x− x̂ is orthogonal to y.

• If y1, 
 , yn is an orthogonal basis of V , and x is in V ,
then

x= c1y1+
 + cnyn with cj=
x · yj

yj · yj

.

x decomposes as the sum of its projections onto each vector
in the orthogonal basis.

Example 1. Express





2

1

1





x

in terms of the basis





1

−1

0





y1

,





1

1

0





y2

,





0

0

1





y3

.

Solution. Note that y1, y2, y3 is an orthogonal basis of R3.
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



2
1
1



 = c1





1
−1
0



+ c2





1
1
0



+ c3





0
0
1





=





2

1

1



·





1

−1

0









1

−1

0



·





1

−1

0









1
−1
0





projection of x onto y1

+





2

1

1



·





1

1

0









1

1

0



·





1

1

0









1
1
0





projection of x onto y2

+





2

1

1



·





0

0

1









0

0

1



·





0

0

1









0
0
1





projection of x onto y3

=
1

2





1
−1
0



+
3

2





1
1
0



+





0
0
1





Orthogonal projection on subspaces

Theorem 2. LetW be a subspace ofRn. Then, each x inR
n can be uniquely written as

x= x̂
�

in W

+ x
⊥

�

in W⊥

.

v1

v2

x

x̂

x
⊥

• x̂ is the orthogonal projection of x onto W .

x̂ is the point in W closest to x. For any other y in W , dist(x, x̂)< dist(x, y).

• If v1,
 ,vm is an orthogonal basis of W , then

x̂=

(

x ·v1

v1 ·v1

)

v1+
 +

(

x ·vm

vm ·vm

)

vm.

Once x̂ is determined, x⊥=x− x̂.

(This is also the orthogonal projection of x onto W⊥.)

Example 3. Let W = span

{





3

0

1



,





0

1

0





}

, and x=





0

3

10



.

• Find the orthogonal projection of x onto W .

(or: find the vector in W which is closest to x)

• Write x as a vector in W plus a vector orthogonal to W .

Armin Straub
astraub@illinois.edu

2



Solution.

Note that w1=





3

0

1



 and w2=





0

1

0



 are an orthogonal basis for W .

[We will soon learn how to construct orthogonal bases ourselves.]

Hence, the orthogonal projection of x onto W is:

x̂=
x ·w1

w1 ·w1

w1+
x ·w2

w2 ·w2

w2 =





0

3

10



·





3

0

1









3

0

1



·





3

0

1









3
0
1



+





0

3

10



·





0

1

0









0

1

0



·





0

1

0









0
1
0





=
10

10





3
0
1



+3





0
1
0



=





3
3
1





x̂ is the vector in W which best approximates x.

Orthogonal projection of x onto the orthogonal complement of W :

x
⊥=





0

3

10



−





3

3

1



=





−3

0

9



. Hence, x=





0

3

10



=





3

3

1





�

in W

+





−3

0

9





�

in W⊥

.

Note: Indeed,





−3

0

9



 is orthogonal to w1=





3

0

1



 and w2=





0

1

0



.

Definition 4. Let v1,
 ,vm be an orthogonal basis of W , a subspace of Rn. Note that
the projection map πW :Rn→R

n, given by

x� x̂ =

(

x ·v1

v1 ·v1

)

v1+
 +

(

x ·vm

vm ·vm

)

vm

is linear. The matrix P representing πW with respect to the standard basis is the
corresponding projection matrix.

Example 5. Find the projection matrix P which corresponds to orthogonal projection

onto W = span

{





3

0

1



,





0

1

0





}

in R
3.

Solution. Standard basis :





1

0

0



,





0

1

0



,





0

0

1



.

The first column of P encodes the projection of





1

0

0



:





1

0

0



·





3

0

1









3

0

1



·





3

0

1









3

0

1



+





1

0

0



·





0

1

0









0

1

0



·





0

1

0









0

1

0



=
3

10





3

0

1



. Hence P =









9

1 0
∗ ∗

0 ∗ ∗

3

1 0
∗ ∗









.
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The second column of P encodes the projection of





0

1

0



:





0

1

0



·





3

0

1









3

0

1



·





3

0

1









3

0

1



+





0

1

0



·





0

1

0









0

1

0



·





0

1

0









0

1

0



=





0

1

0



. Hence P =









9

1 0
0 ∗

0 1 ∗

3

1 0
0 ∗









.

The third column of P encodes the projection of





0

0

1



:





0

0

1



·





3

0

1









3

0

1



·





3

0

1









3

0

1



+





0

0

1



·





0

1

0









0

1

0



·





0

1

0









0

1

0



=
1

10





3

0

1



. Hence P =









9

1 0
0

3

1 0

0 1 0

3

1 0
0

1

1 0









.

Example 6. (again)

Find the orthogonal projection of x=





0

3

10



 onto W = span

{





3

0

1



,





0

1

0





}

.

Solution. x̂=Px=









9

1 0
0

3

1 0

0 1 0

3

1 0
0

1

1 0













0

3

10



=





3

3

1



, as in the previous example.

Example 7. Compute P 2 for the projection matrix we just found. Explain!

Solution.








9

10
0

3

10

0 1 0
3

10
0

1

10

















9

10
0

3

10

0 1 0
3

10
0

1

10









=









9

10
0

3

10

0 1 0
3

10
0

1

10









Projecting a second time does not change anything anymore.

Practice problems

Example 8. Find the closest point to x in span{v1,v2}, where

x=









2
4
0
−2









, v1=









1
1
0
0









, v2=









1
0
1
1









.

Solution. This is the orthogonal projection of x onto span{v1,v2}.
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Review

Let W be a subspace of Rn, and x in R
n (but maybe not in W ).

v1

v2

x

x̂

x
⊥

Let x̂ be the orthogonal projection of x onto W .

(vector in W as close as possible to x)

• If v1,
 , vm is an orthogonal basis of W , then

x̂=

(

x ·v1

v1 ·v1

)

v1

proj. of x onto v1

+
 +

(

x ·vm

vm ·vm

)

vm

proj. of x onto vm

.

• The decomposition x= x̂
�

in W

+ x
⊥

�

in W⊥

is unique.

Least squares

Definition 1. x̂ is a least squares solution of the system Ax = b if x̂ is such that
Ax̂ − b is as small as possible.

• If Ax= b is consistent, then a least squares solution x̂ is just
an ordinary solution.

(in that case, Ax̂− b=0)

• Interesting case: Ax= b is inconsistent.

(in other words: the system is overdetermined)

Idea. Ax= b is consistent� b is in Col(A)

So, if Ax= b is inconsistent, we

• replace b with its projection b̂ onto Col(A),

• and solve Ax̂ = b̂. (consistent by construction!)

Ax

b

Armin Straub
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Example 2. Find the least squares solution to Ax= b, where

A=





1 1
−1 1
0 0



, b=





2
1
1



.

Solution. Note that the columns of A are orthogonal.

[Otherwise, we could not proceed in the same way.]

Hence, the projection b̂ of b onto Col(A) is

b̂=





2

1

1





·





1

−1

0









1

−1

0





·





1

−1

0









1
−1
0



+





2

1

1





·





1

1

0









1

1

0





·





1

1

0









1
1
0



=
1

2





1
−1
0



+
3

2





1
1
0



=





2
1
0



.

We have already solved Ax̂ = b̂ in the process: x̂=
[

1/2
3/2

]

.

The normal equations

The following result provides a straightforward recipe (thanks to the FTLA) to find least
squares solutions for any matrix.

[The previous example was only simple because the columns of A were orthogonal.]

Theorem 3. x̂ is a least squares solution of Ax= b

� ATAx̂=AT
b (the normal equations)

Proof.

x̂ is a least squares solution of Ax= b

� Ax̂ − b is as small as possible

� Ax̂ − b is orthogonal to Col(A)

G

FTLA
Ax̂ − b is in Nul(AT)

� AT(Ax̂ − b) =0

� ATAx̂ =AT
b �

Armin Straub
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Example 4. (again) Find the least squares solution to Ax= b, where

A=





1 1
−1 1
0 0



, b=





2
1
1



.

Solution.

ATA=

[

1 −1 0
1 1 0

]





1 1
−1 1
0 0



=

[

2 0
0 2

]

ATb=

[

1 −1 0
1 1 0

]





2
1
1



=

[

1
3

]

The normal equations ATAx̂ =AT
b are
[

2 0
0 2

]

x̂=

[

1
3

]

.

Solving, we find (again) x̂=
[

1/2
3/2

]

.

Example 5. Find the least squares solution to Ax= b, where

A=





4 0
0 2
1 1



, b=





2
0
11



.

What is the projection of b onto Col(A)?

Solution.

ATA=

[

4 0 1
0 2 1

]





4 0
0 2
1 1



=

[

17 1
1 5

]

ATb=

[

4 0 1
0 2 1

]





2
0
11



=

[

19

11

]

The normal equations ATAx̂ =AT
b are
[

17 1
1 5

]

x̂=

[

19

11

]

.

Solving, we find x̂ =
[

1
2

]

.

The projection of b onto Col(A) is Ax̂ =





4 0
0 2
1 1





[

1
2

]

=





4
4
3



.

Just to make sure: why is Ax̂ the projection of b onto Col(A)?

Because, for a least squares solution x̂, Ax̂− b is as small as possible.
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The projection b̂ of b onto Col(A) is

b̂ =Ax̂ , with x̂ such that ATAx̂ =AT
b.

If A has full column rank, this is (columns of A independent)

b̂ =A(ATA)−1AT
b.

Hence, the projection matrix for projecting onto Col(A) is

P =A(ATA)−1AT .

Application: least squares lines

Experimental data: (xi, yi)

Wanted: parameters β1, β2 such that yi≈ β1+ β2xi for all i

0 2 4 6 8

0

2

4

This approximation should be so that

SSres=
∑

i

[yi− (β1+ β2xi)]
2

residual sum of squares

is as small as possible.

Example 6. Find β1, β2 such that the line y= β1+ β2x best fits the data points (2,1),
(5, 2), (7, 3), (8, 3).

Solution. The equations yi= β1+ β2xi in matrix form:








1 x1

1 x2

1 x3

1 x4









design matrix X

[

β1

β2

]

=









y1
y2
y3
y4









observation
vector y

Armin Straub
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Here, we need to find a least-squares solution to








1 2
1 5
1 7
1 8









[

β1

β2

]

=









1
2
3
3









.

XTX =

[

1 1 1 1
2 5 7 8

]









1 2
1 5
1 7
1 8









=

[

4 22

22 142

]

XTy=

[

1 1 1 1
2 5 7 8

]









1
2
3
3









=

[

9
57

]

Solving
[

4 22

22 142

]

β̂ =
[

9
57

]

, we find
[

β1

β2

]

=
[

2/7
5/14

]

.

Hence, the least squares line is y=
2

7
+

5

14
x.

0 2 4 6 8

0

2

4

Armin Straub
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perimeter = 4

perimeter = π

perimeter = 4

perimeter = π

perimeter = 4

perimeter = π

perimeter = 4

perimeter = π

perimeter = 4

perimeter = π

π = 4

Happy Halloween!
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Review

• x̂ is a least squares solution of the system Ax= b

� x̂ is such that Ax̂ − b is as small as possible

G

FTLA
ATAx̂ =ATb (the normal equations)

Application: least squares lines

Example 1. Find β1, β2 such that the line y= β1+ β2x best fits the data points (2,1),
(5, 2), (7, 3), (8, 3).

0 2 4 6 8

0

2

4

Comment . As usual in practice, we are minimizing the (sum of squares of the) vertical offsets:

http://mathworld.wolfram.com/LeastSquaresFitting.html

Solution. The equations yi= β1+ β2xi in matrix form:
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







1 x1

1 x2

1 x3

1 x4









design matrix X

[

β1

β2

]

=









y1
y2
y3
y4









observation
vector y

Here, we need to find a least squares solution to








1 2

1 5

1 7

1 8









[

β1

β2

]

=









1

2

3

3









.

XTX =

[

1 1 1 1

2 5 7 8

]









1 2

1 5

1 7

1 8









=

[

4 22

22 142

]

XTy=

[

1 1 1 1

2 5 7 8

]









1

2

3

3









=

[

9

57

]

Solving
[

4 22

22 142

]

β̂ =
[

9
57

]

, we find
[

β1

β2

]

=
[

2/7
5/14

]

.

Hence, the least squares line is y=
2

7
+

5

14
x.

0 2 4 6 8

0

2

4

How well does the line fit the data (2, 1), (5, 2), (7, 3), (8, 3)?

How small is the sum of squares of the vertical offsets?
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• residual sum of squares: SSres =
∑

(yi− (β1+ β2xi)

error at (xi,yi)

)2

The choice of β1, β2 from least squares, makes SSres as small as possible.

• total sum of squares: SStot=
∑

(yi− ȳ)2,

where ȳ =
1

n

∑

yi is the mean of the observed data

• coefficient of determination: R2=1−
SSr e s

SSt o t

General rule: the closer R2 is to 1, the better the regression line fits the data.

Here, ȳ =9/4: (2, 1), (5, 2), (7, 3), (8, 3)

R2=

1−

(

1−
(

2

7
+

5

14
2

))

2

+

(

2−
(

2

7
+

5

14
5

))

2

+

(

3−
(

2

7
+

5

14
7

))

2

+

(

3−
(

2

7
+

5

14
8

))

2

(

1− 9

4

)

2

+

(

2− 9

4

)

2

+

(

3− 9

4

)

2

+

(

3− 9

4

)

2

= 1− 0.075

2.75
= 0.974

very close to 1� good fit

Other curves

We can also fit the experimental data (xi, yi) using other curves.

Example 2. yi≈ β1+ β2xi+ β3xi
2 with parameters β1, β2, β3.

The equations yi= β1+ β2xi+ β3xi
2 in matrix form:











1 x1 x1
2

1 x2 x2
2

1 x3 x3
2


 
 












design matrix X





β1
β2
β3



=









y1
y2
y3











observation
vector y

Given data (xi, yi), we then find the least squares solution to Xβ= y.

Multiple linear regression

In statistics, linear regression is an approach for modeling the relation-

ship between a scalar dependent variable and one or more explanatory

variables.

The case of one explanatory variable is called simple linear regression.

For more than one explanatory variable, the process is called multiple

linear regression.

http://en.wikipedia.org/wiki/Linear_regression

The experimental data might be of the form (vi, wi, yi), where now the dependent
variable yi depends on two explanatory variables vi, wi (instead of just one xi).
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Example 3. Fitting a linear relationship yi≈ β1+ β2vi+ β3wi, we get:








1 v1 w1

1 v2 w2

1 v3 w3


 
 










design matrix





β1

β2

β3



=









y1
y2
y3











observation
vector

And we again proceed by finding a least squares solution.

Review

v1

v2

x

x̂

x
⊥

• Suppose v1,
 ,vm is an orthonormal basis of W .

The orthogonal projection of x onto W is:

x̂= 〈x,v1〉v1

proj. of x onto v1

+
 + 〈x,vm〉vm

proj. of x onto vm

.

(To stay agile, we are writing 〈x,v1〉=x ·v1 for the inner product.)

Gram–Schmidt

Example 4. Find an orthonormal basis for V = span















1
0
0
0









,









2
1
0
0









,









1
1
1
1















.

Recipe. (Gram–Schmidt orthonormalization)

Given a basis a1,
 ,an, produce an orthonormal basis q1,
 , qn.

b1=a1, q1=
b1

‖b1‖

b2=a2− 〈a2, q1〉q1, q2=
b2

‖b2‖

b3=a3−〈a3, q1〉q1− 〈a3, q2〉q2, q3=
b3

‖b3‖
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Example 5. Find an orthonormal basis for V = span















1
0
0
0









,









2
1
0
0









,









1
1
1
1















.

Solution.

b1=









1

0

0

0









, q1=









1

0

0

0









b2=









2

1

0

0









−〈









2

1

0

0









, q1〉q1=









0

1

0

0









, q2=









0

1

0

0









b3=









1

1

1

1









−〈









1

1

1

1









, q1〉q1−〈









1

1

1

1









, q2〉q2=









0

0

1

1









, q3=
1

2
√









0

0

1

1









We have obtained an orthonormal basis for V :








1

0

0

0









,









0

1

0

0









,
1

2
√









0

0

1

1









.
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Review

• Vectors q1,
 , qn are orthonormal if

qi
Tqj =

{

0, if i� j,

1, if i= j.

• Gram–Schmidt orthonormalization:

Input: basis a1,
 ,an for V .

Output: orthonormal basis q1,
 , qn for V .

b1=a1, q1=
b1

‖b1‖

b2=a2−〈a2, q1〉q1, q2=
b2

‖b2‖

b3=a3−〈a3, q1〉q1−〈a3, q2〉q2, q3=
b3

‖b3‖




a1

a2

b2

Example 1. Apply Gram–Schmidt to the vectors





1

2

2



,





1

1

0



,





1

1

1



.

Solution.

b1=





1

2

2



, q1 =

1

3





1

2

2





b2=





1

1

0



−〈





1

1

0



,
1

3





1

2

2



〉
1

3





1

2

2



=
1

3





2

1

−2



, q2 =

1

3





2

1

−2





b3=





1

1

1



−〈





1

1

1



, q1〉q1−〈





1

1

1



, q2〉q2=
 =
1

9





2

−2

1



, q3 =

1

3





2

−2

1





We obtained the orthonormal vectors
1

3





1

2

2



,
1

3





2

1

−2



,
1

3





2

−2

1



.

Theorem 2. The columns of an m×n matrix Q are orthonormal

� QTQ= I (the n ×n identity)

Proof. Let q1,
 , qn be the columns of Q.

They are orthonormal if and only if qi
T
qj =

{

0, if i� j,

1, if i= j.
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All these inner products are packaged in QTQ= I:







� q1
T
�

� q2
T
�














| |
q1 q2 �

| |



=





1 0 0
0 1 0
0 0 �





�

Definition 3. An orthogonal matrix is a square matrix Q with orthonormal columns.

It is historical convention to restrict to square matrices, and to say orthogonal matrix even
though “orthonormal matrix” might be better.

An n×n matrix Q is orthogonal � QTQ= I

In other words, Q−1=QT .

Example 4. P =





0 0 1

1 0 0

0 1 0



 is orthogonal.

In general, all permutation matrices P are orthogonal.

Why? Because their columns are a permutation of the standard basis.

And so we always have PTP = I .

Example 5. Q=

[

cos θ −sin θ

sin θ cos θ

]

Q is orthogonal because:

•
[

cos θ

sin θ

]

,
[

−sin θ

cos θ

]

is an orthonormal basis of R2

Just to make sure: why length 1? Because
∥

∥

∥

[

cos θ

sin θ

]

∥

∥

∥= cos2θ+ sin2θ
√

=1.

• Alternatively: QTQ=
[

cos θ sin θ

−sin θ cos θ

][

cos θ −sin θ

sin θ cos θ

]

=
[

1 0

0 1

]

Example 6. Is H =
[

1 1

1 −1

]

orthogonal?

No, the columns are orthogonal but not normalized.

But
1

2
√

[

1 1

1 −1

]

is an orthogonal matrix.

Just for fun: a n × n matrix with entries ±1 whose columns are orthogonal is called a Hadamard

matrix of size n.

A size 4 example:
[

H H

H −H

]

=









1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1









Continuing this construction, we get examples of size 8, 16, 32,


It is believed that Hadamard matrices exist for all sizes 4n.

But no example of size 668 is known yet.
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The QR decomposition (flashed at you)

• Gaussian elimination in terms of matrices: A=LU

• Gram–Schmidt in terms of matrices: A=QR

Let A be an m×n matrix of rank n. (columns independent)

Then we have the QR decomposition A=QR,

• where Q is m×n and has orthonormal columns, and

• R is upper triangular, n×n and invertible.

Idea: Gram–Schmidt on the columns of A, to get the columns of Q.

Example 7. Find the QR decomposition of A=





1 2 4

0 0 5

0 3 6



.

Solution. We apply Gram–Schmidt to the columns of A:




1

0

0



= q1





2

0

3



− 〈





2

0

3



, q1〉q1=





0

0

3



,





0

0

1



= q2





4

5

6



− 〈





4

5

6



, q1〉q1−〈





4

5

6



, q2〉q2=





0

5

0



,





0

1

0



= q3

Hence: Q= [ q1 q2 q3 ] =





1 0 0
0 0 1
0 1 0





To find R in A=QR,

note that QTA=QTQR=R.

R=





1 0 0
0 0 1
0 1 0









1 2 4
0 0 5
0 3 6



 =





1 2 4
0 3 6
0 0 5





Summarizing, we have




1 2 4
0 0 5
0 3 6



=





1 0 0
0 0 1
0 1 0









1 2 4
0 3 6
0 0 5



.

Recipe. In general, to obtain A=QR:

• Gram–Schmidt on (columns of) A, to get (columns of) Q.

• Then, R=QTA.
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The resulting R is indeed upper triangular, and we get:





| |
a1 a2 �

| |



=





| |
q1 q2 �

| |















q1
Ta1 q1

Ta2 q1
Ta3 �

q2
Ta2 q2

Ta3

q3
Ta3

�











It should be noted that, actually, no extra work is needed for computing R:
all the inner products in R have been computed during Gram–Schmidt.

(Just like the LU decomposition encodes the steps of Gaussian elimination,
the QR decomposition encodes the steps of Gram–Schmidt.)

Practice problems

Example 8. Complete
1

3





1

2

2



,
1

3





−2

−1

2



 to an orthonormal basis of R3.

(a) by using the FTLA to determine the orthogonal complement of the span you already
have

(b) by using Gram–Schmidt after throwing in an independent vector such as





1

0

0





Example 9. Find the QR decomposition of A=





1 1 2

0 0 1

1 0 0



.
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Review

• Let A be an m×n matrix of rank n. (columns independent)

Then we have the QR decomposition A=QR,

◦ where Q is m×n with orthonormal columns, and

◦ R is upper triangular and invertible.

• To obtain





| |
a1 a2 �

| |



=





| |
q1 q2 �

| |















q1
Ta1 q1

Ta2 q1
Ta3 �

q2
Ta2 q2

Ta3

q3
Ta3

�











◦ Gram–Schmidt on (columns of) A, to get (columns of) Q.

◦ Then, R=QTA. (actually unnecessary!)

Example 1. The QR decomposition is also used to solve systems of linear equa-
tions. (we assume A is n×n, and A−1 exists)

Ax= b � QRx= b

� Rx=QTb

The last system is triangular and is solved by back substitution.

QR is a little slower than LU but makes up in numerical stability.

If A is not n×n and invertible, then Rx=QT
b gives the least squares solutions!

Example 2. The QR decomposition is very useful for solving least squares problems:

ATAx̂ =ATb � (QR)TQR

=RTQTQR

x̂ =(QR)Tb

� RTRx̂ =RTQTb

� Rx̂ =QTb

Again, the last system is triangular and is solved by back substitution.

x̂ is a least squares solution of Ax= b

� Rx̂ =QTb (where A=QR)
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Application: Fourier series

Review. Given an orthogonal basis v1,v2,
 , we express a vector x as:

x= c1v1+ c2v2+
 , civi=
〈x,vi〉
〈vi,vi〉

vi projection
of x onto vi

A Fourier series of a function f(x) is an infinite expansion:

f(x) = a0+ a1cos(x)+ b1sin(x) + a2cos(2x)+ b2sin(2x)+�

Example 3.

sin (x)

−π π 2π 3π 4π

sin (2x)

−π π 2π 3π 4π

sin (3x)

−π π 2π 3π 4π
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Example 4. (just a preview)

blue
function

=
4

π

(

sin (x) +
1

3
sin(3x)+

1

5
sin(5x) +

1

7
sin(7x)+


)

−π π 2π 3π 4π

• We are working in the vector space of functions R→R.

◦ More precisely, “nice” (say, piecewise continuous) functions that have period 2π.

◦ These are infinite dimensional vector spaces.

• The functions

1, cos (x), sin (x), cos (2x), sin (2x),


are a basis of this space. In fact, an orthogonal basis!

That’s the reason for the success of Fourier series.

But what is the inner product on the space of functions?

• Vectors in R
n: 〈v ,w〉= v1w1+
 + vnwn

• Functions: 〈f , g〉=
∫

0

2π
f(x)g(x)dx

Why these limits? Because our functions have period 2π.

Example 5. Show that cos (x) and sin (x) are orthogonal.

Solution.

〈cos (x), sin (x)〉=

∫

0

2π

cos (x)sin(x)dx=

[

1

2
(sin (x))2

]

0

2π

=0

More generally, 1, cos (x), sin (x), cos (2x), sin (2x),
 are all orthogonal to each other.
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Example 6. What is the norm of cos (x)?

Solution.

〈cos (x), cos (x)〉=

∫

0

2π

cos (x)cos(x)dx=π

Why? There’s many ways to evaluate this integral. For instance:

• you could use integration by parts,

• you could use a trig identity,

• here’s a simple way:

◦
∫

0

2π
cos

2 (x)dx=
∫

0

2π
sin

2 (x)dx (cos and sin are just a shift apart)

◦ cos
2 (x)+ sin

2 (x) = 1

◦ So:
∫

0

2π
cos

2 (x)dx=
1

2

∫

0

2π
1dx=π

Hence, cos (x) is not normalized. It has norm ‖cos (x)‖= π
√

.

Example 7. The same calculation shows that cos (kx) and sin (kx) have norm π
√

as
well.

Fourier series of f(x):

f(x) = a0+ a1cos(x)+ b1sin(x) + a2cos(2x)+ b2sin(2x)+�

Example 8. How do we find a1?

Or: how much cosine is in a function f(x)?

Solution.

a1=
〈f(x), cos (x)〉
〈cos (x), cos (x)〉 =

1

π

∫

0

2π

f(x)cos(x)dx

f(x) has the Fourier series

f(x)= a0+ a1cos(x)+ b1sin(x)+ a2cos(2x)+ b2sin(2x)+�

where

ak=
〈f(x), cos (kx)〉

〈cos (kx), cos (kx)〉
=

1

π

∫

0

2π

f(x)cos(kx)dx,

bk=
〈f(x), sin (kx)〉

〈sin (kx), sin (kx)〉
=

1

π

∫

0

2π

f(x)sin(kx)dx,

a0=
〈f(x), 1〉

〈1, 1〉
=

1

2π

∫

0

2π

f(x)dx.
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Example 9. Find the Fourier series of the 2π-periodic function f(x) defined by

f(x) =

{

−1, for x∈ (−π, 0),
+1, for x∈ (0, π).

−π π 2π 3π 4π

Solution. Note that
∫

0

2π
and

∫

−π

π
are the same here. (why?!)

a0 =
1

2π

∫

−π

π

f(x)dx=0

an =
1

π

∫

−π

π

f(x)cos(nx)dx

=
1

π

[

−

∫

−π

0

cos (nx)dx+

∫

0

π

cos (nx)dx

]

=0

bn =
1

π

∫

−π

π

f(x)sin(nx)dx

=
1

π

[

−

∫

−π

0

sin (nx)dx+

∫

0

π

sin (nx)dx

]

=
2

π

[
∫

0

π

sin (nx)dx

]

=
2

π

[

−
1

n
cos(nx)

]

0

π

=
2

πn
[1− cos (nπ)]

=
2

πn
[1− (−1)n] =

{

4

πn
if n is odd

0 if n is even

In conclusion,

f(x)=
4

π

(

sin (x)+
1

3
sin(3x)+

1

5
sin(5x)+

1

7
sin(7x)+


)

.

−π π 2π 3π 4π
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Review

• An inner product for 2π-periodic functions:

〈f , g〉=
∫

0

2π
f(x)g(x)dx (in R

n: 〈v,w〉= v1w1+
 + vnwn)

• 1, cos (x), sin (x), cos (2x), sin (2x),
 are orthogonal

−π π 2π 3π 4π −π π 2π 3π 4π −π π 2π 3π 4π

• An expansion in that basis is a Fourier series:

f(x)= a0+ a1cos(x) + b1sin(x)+ a2cos(2x)+ b2sin(2x)+�

where

ak=
〈f(x), cos (kx)〉

〈cos (kx), cos (kx)〉
=

1

π

∫

0

2π

f(x)cos(kx)dx,

bk=
〈f(x), sin (kx)〉

〈sin (kx), sin (kx)〉
=

1

π

∫

0

2π

f(x)sin(kx)dx,

a0=
〈f(x), 1〉

〈1, 1〉
=

1

2π

∫

0

2π

f(x)dx.

Example 1.

blue
function

=
4

π

(

sin (x) +
1

3
sin(3x)+

1

5
sin(5x) +

1

7
sin(7x)+


)

−π π 2π 3π 4π
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Example 2. Find the Fourier series of the 2π-periodic function f(x) defined by

f(x) =

{

−1, for x∈ (−π, 0),
+1, for x∈ (0, π).

−π π 2π 3π 4π

Solution. Note that
∫

0

2π
and

∫

−π

π
are the same here. (why?!)

a0 =
1

2π

∫

−π

π

f(x)dx=0

an =
1

π

∫

−π

π

f(x)cos(nx)dx

=
1

π

[

−

∫

−π

0

cos (nx)dx+

∫

0

π

cos (nx)dx

]

=0

bn =
1

π

∫

−π

π

f(x)sin(nx)dx

=
1

π

[

−

∫

−π

0

sin (nx)dx+

∫

0

π

sin (nx)dx

]

=
2

π

[
∫

0

π

sin (nx)dx

]

=
2

π

[

−
1

n
cos(nx)

]

0

π

=
2

πn
[1− cos (nπ)]

=
2

πn
[1− (−1)n] =

{

4

πn
if n is odd

0 if n is even

In conclusion,

f(x)=
4

π

(

sin (x)+
1

3
sin(3x)+

1

5
sin(5x)+

1

7
sin(7x)+


)

.
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Determinants

For the next few lectures, all matrices are square!

Recall that
[

a b

c d

]

−1

=
1

ad− bc

[

d −b

−c a

]

.

The determinant of

• a 2× 2 matrix is det
(

[

a b

c d

]

)

= ad− bc,

• a 1× 1 matrix is det ([ a ]) = a.

Goal: A is invertible � det (A)� 0

We will write both det

(

[

a b

c d

]

)

and
∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

for the determinant.

Definition 3. The determinant is characterized by:

• the normalization det I =1,

• and how it is affected by elementary row operations:

◦ (replacement) Add one row to a multiple of another row.

Does not change the determinant.

◦ (interchange) Interchange two rows.

Reverses the sign of the determinant.

◦ (scaling) Multiply all entries in a row by s.

Multiplies the determinant by s.

Example 4. Compute

∣

∣

∣

∣

∣

∣

1 0 0
0 2 0
0 0 7

∣

∣

∣

∣

∣

∣

.

Solution.
∣

∣

∣

∣

∣

∣

1 0 0
0 2 0
0 0 7

∣

∣

∣

∣

∣

∣

@

R2→
1

2
R2

2

∣

∣

∣

∣

∣

∣

1 0 0
0 1 0
0 0 7

∣

∣

∣

∣

∣

∣

@

R3→
1

7
R3

14

∣

∣

∣

∣

∣

∣

1 0 0
0 1 0
0 0 1

∣

∣

∣

∣

∣

∣

= 14

Example 5. Compute

∣

∣

∣

∣

∣

∣

1 2 3
0 2 4
0 0 7

∣

∣

∣

∣

∣

∣

.

Solution.
∣

∣

∣

∣

∣

∣

1 2 3
0 2 4
0 0 7

∣

∣

∣

∣

∣

∣

@

R2→
1

2
R2

2

∣

∣

∣

∣

∣

∣

1 2 3
0 1 2
0 0 7

∣

∣

∣

∣

∣

∣

@

R3→
1

7
R3

14

∣

∣

∣

∣

∣

∣

1 2 3
0 1 2
0 0 1

∣

∣

∣

∣

∣

∣

@

R1→R1−3R3
R2→R2−2R3

14

∣

∣

∣

∣

∣

∣

1 2 0
0 1 0
0 0 1

∣

∣

∣

∣

∣

∣

@

R1→R1−2R2
14

∣

∣

∣

∣

∣

∣

1 0 0
0 1 0
0 0 1

∣

∣

∣

∣

∣

∣

= 14
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The determinant of a triangular matrix is
the product of the diagonal entries.

Example 6. Compute

∣

∣

∣

∣

∣

∣

1 2 0
3 −1 2
2 0 1

∣

∣

∣

∣

∣

∣

.

Solution.
∣

∣

∣

∣

∣

∣

1 2 0
3 −1 2
2 0 1

∣

∣

∣

∣

∣

∣

@

R2→R2−3R1
R3→R3−2R1

∣

∣

∣

∣

∣

∣

1 2 0
0 −7 2
0 −4 1

∣

∣

∣

∣

∣

∣

@

R3→R3−
4

7
R2

∣

∣

∣

∣

∣

∣

∣

1 2 0
0 −7 2

0 0 −
1

7

∣

∣

∣

∣

∣

∣

∣

= 1 · (−7) ·
(

−
1

7

)

=1

Example 7. Discover the formula for
∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

.

Solution.

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

@

R2→R2−
c

a

R1

∣

∣

∣

∣

∣

a b

0 d−
c

a
b

∣

∣

∣

∣

∣

= a
(

d−
c

a
b
)

= ad− bc

Example 8. Compute

∣

∣

∣

∣

∣

∣

∣

∣

1 2 3 4
0 2 1 5
0 0 2 1
0 0 3 5

∣

∣

∣

∣

∣

∣

∣

∣

.

Solution.
∣

∣

∣

∣

∣

∣

∣

∣

1 2 3 4
0 2 1 5
0 0 2 1
0 0 3 5

∣

∣

∣

∣

∣

∣

∣

∣

@

R4→R4−
3

2
R3

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 2 3 4
0 2 1 5
0 0 2 1

0 0 0
7

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

=1 · 2 · 2 ·
7

2
= 14

The following important properties follow from the behaviour under row operations.

• det (A)= 0 � A is not invertible

Why? Because det (A)= 0 if only if, in an echelon form, a diagonal entry is zero (that is, a pivot
is missing).

• det (AB)= det (A)det(B)

• det (A−1)=
1

det (A)

• det (AT) = det (A)
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Example 9. Recall that AB=0, then it does not follow that A=0 or B=0. However,
show that det (A) = 0 or det (B)= 0.

Solution. Follows from det (AB)= det (0)= 0,

and det (AB)= det (A)det(B).

A “bad” way to compute determinants

Example 10. Compute

∣

∣

∣

∣

∣

∣

1 2 0
3 −1 2
2 0 1

∣

∣

∣

∣

∣

∣

by cofactor expansion.

Solution. We expand by the first row:
∣

∣

∣

∣

∣

∣

1 2 0
3 −1 2
2 0 1

∣

∣

∣

∣

∣

∣

=1 ·

∣

∣

∣

∣

∣

∣

+
−1 2
0 1

∣

∣

∣

∣

∣

∣

− 2 ·

∣

∣

∣

∣

∣

∣

−

3 2
2 1

∣

∣

∣

∣

∣

∣

+0 ·

∣

∣

∣

∣

∣

∣

+
3 −1
2 0

∣

∣

∣

∣

∣

∣

@

i.e.
1 ·

∣

∣

∣

∣

−1 2
0 1

∣

∣

∣

∣

− 2 ·
∣

∣

∣

∣

3 2
2 1

∣

∣

∣

∣

+0 ·
∣

∣

∣

∣

3 −1
2 0

∣

∣

∣

∣

=1 · (−1)− 2 · (−1)+ 0=1

Each term in the cofactor expansion is ±1 times an entry times a smaller determinant
(row and column of entry deleted).

The ±1 is assigned to each entry according to









+ − + �

− + −

+ − +

 �









.

Solution. We expand by the second column:
∣

∣

∣

∣

∣

∣

1 2 0
3 −1 2
2 0 1

∣

∣

∣

∣

∣

∣

=−2 ·

∣

∣

∣

∣

∣

∣

−

3 2
2 1

∣

∣

∣

∣

∣

∣

+(−1) ·

∣

∣

∣

∣

∣

∣

1 0
+

2 1

∣

∣

∣

∣

∣

∣

− 0 ·

∣

∣

∣

∣

∣

∣

1 0
3 2

−

∣

∣

∣

∣

∣

∣

= − 2 · (−1)+ (−1) · 1− 0=1

Solution. We expand by the third column:
∣

∣

∣

∣

∣

∣

1 2 0
3 −1 2
2 0 1

∣

∣

∣

∣

∣

∣

=0 ·

∣

∣

∣

∣

∣

∣

+
3 −1
2 0

∣

∣

∣

∣

∣

∣

− 2 ·

∣

∣

∣

∣

∣

∣

1 2
−

2 0

∣

∣

∣

∣

∣

∣

+1 ·

∣

∣

∣

∣

∣

∣

1 2
3 −1

+

∣

∣

∣

∣

∣

∣

= 0− 2 · (−4)+ 1 · (−7)= 1

Practice problems

Problem 1. Compute

∣

∣

∣

∣

∣

∣

∣

∣

1 2 3 4
0 5 0 0
2 7 6 10

2 9 7 11

∣

∣

∣

∣

∣

∣

∣

∣

.

Solution. The final answer should be −10.
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Review

• The determinant is characterized by det I =1 and the effect of row op’s:

◦ replacement: does not change the determinant

◦ interchange: reverses the sign of the determinant

◦ scaling row by s: multiplies the determinant by s

•

∣

∣

∣

∣

∣

∣

∣

∣

1 2 3 4
0 2 1 5
0 0 2 1
0 0 0 3

∣

∣

∣

∣

∣

∣

∣

∣

=1 · 2 · 2 · 3= 12

• det (A)= 0 � A is not invertible

• det (AB) = det (A)det(B)

• det (A−1)=
1

det (A)

• det (AT)= det (A)

• What’s wrong?!

det (A−1)= det
1

ad− bc

[

d −b

−c a

]

=
1

ad− bc
(da− (−b)(−c))= 1

The corrected calculation is:

det
1

ad− bc

[

d −b

−c a

]

=
1

(ad− bc)2
(da− (−b)(−c))=

1

ad− bc

This is compatible with det (A−1)=
1

det (A)
.

Example 1. Suppose A is a 3× 3 matrix with det (A)= 5. What is det (2A)?

Solution. A has three rows.

Multiplying all 3 of them by 2 produces 2A.

Hence, det (2A)= 23 det (A) = 40.
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A “bad” way to compute determinants

Example 2. Compute

∣

∣

∣

∣

∣

∣

1 2 0
3 −1 2
2 0 1

∣

∣

∣

∣

∣

∣

by cofactor expansion.

Solution. We expand by the second column:
∣

∣

∣

∣

∣

∣

1 2 0
3 −1 2
2 0 1

∣

∣

∣

∣

∣

∣

=−2 ·

∣

∣

∣

∣

∣

∣

−

3 2
2 1

∣

∣

∣

∣

∣

∣

+(−1) ·

∣

∣

∣

∣

∣

∣

1 0
+

2 1

∣

∣

∣

∣

∣

∣

− 0 ·

∣

∣

∣

∣

∣

∣

1 0
3 2

−

∣

∣

∣

∣

∣

∣

= − 2 · (−1)+ (−1) · 1− 0=1

Solution. We expand by the third column:
∣

∣

∣

∣

∣

∣

1 2 0
3 −1 2
2 0 1

∣

∣

∣

∣

∣

∣

=0 ·

∣

∣

∣

∣

∣

∣

+
3 −1
2 0

∣

∣

∣

∣

∣

∣

− 2 ·

∣

∣

∣

∣

∣

∣

1 2
−

2 0

∣

∣

∣

∣

∣

∣

+1 ·

∣

∣

∣

∣

∣

∣

1 2
3 −1

+

∣

∣

∣

∣

∣

∣

= 0− 2 · (−4)+ 1 · (−7)= 1

Why is the method of cofactor expansion not practical?

Because to compute a large n×n determinant,

• one reduces to n determinants of size (n− 1)× (n− 1),

• then n (n− 1) determinants of size (n− 2)× (n− 2),

• and so on.

In the end, we have n! =n(n− 1)� 3 · 2 · 1 many numbers to add.

WAY TOO MUCH WORK! Already 25! = 15511210043330985984000000≈ 1.55 · 1025 .

Context: today’s fastest computer, Tianhe-2, runs at 34 pflops (3.4 · 1016 op’s per second).

By the way: “fastest” is measured by computed LU decompositions!

Example 3.

First off, say hello to a new friend: i, the imaginary unit

It is infamous for i2=−1 .

| 1 | = 1
∣

∣

∣

∣

1 i

i 1

∣

∣

∣

∣

= 1− i2=2
∣

∣

∣

∣

∣

∣

1 i

i 1 i

i 1

∣

∣

∣

∣

∣

∣

= 1

∣

∣

∣

∣

1 i

i 1

∣

∣

∣

∣

− i

∣

∣

∣

∣

i 0
i 1

∣

∣

∣

∣

=2− i2=3

∣

∣

∣

∣

∣

∣

∣

∣

1 i

i 1 i

i 1 i

i 1

∣

∣

∣

∣

∣

∣

∣

∣

= 1

∣

∣

∣

∣

∣

∣

1 i

i 1 i

i 1

∣

∣

∣

∣

∣

∣

− i

∣

∣

∣

∣

∣

∣

i 0
i 1 i

i 1

∣

∣

∣

∣

∣

∣

=3− i2

∣

∣

∣

∣

1 i

i 1

∣

∣

∣

∣

=5
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 i

i 1 i

i 1 i

i 1 i

i 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 1

∣

∣

∣

∣

∣

∣

∣

∣

1 i

i 1 i

i 1 i

i 1

∣

∣

∣

∣

∣

∣

∣

∣

− i2

∣

∣

∣

∣

∣

∣

1 i

i 1 i

i 1

∣

∣

∣

∣

∣

∣

=5+3=8

The Fibonacci numbers!

Do you know about the connection of Fibonacci numbers and rabbits?

Eigenvectors and eigenvalues

Throughout, A will be an n×n matrix.

Definition 4. An eigenvector of A is a nonzero x such that

Ax= λx for some scalar λ.

The scalar λ is the corresponding eigenvalue.

In words: eigenvectors are those x, for which Ax is parallel to x.

Example 5. Verify that
[

1
−2

]

is an eigenvector of A=
[

0 −2
−4 2

]

.

Solution.

Ax=
[

0 −2
−4 2

][

1
−2

]

=
[

4
−8

]

=4x

Hence, x is an eigenvector of A with eigenvalue 4.
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Example 6. Use your geometric understanding to find

the eigenvectors and eigenvalues of A=
[

0 1
1 0

]

.

Solution. A

[

x

y

]

=
[

y

x

]

i.e. multiplication with A is reflection through the line y=x.

• A

[

1
1

]

=1 ·
[

1
1

]

So: x=
[

1

1

]

is an eigenvector with eigenvalue λ=1.

• A

[

−1
1

]

=
[

1
−1

]

=−1 ·
[

−1
1

]

So: x=
[

−1

1

]

is an eigenvector with eigenvalue λ=−1.

Practice problems

Problem 1. Let A be an n×n matrix.

Express the following in terms of det (A):

• det (A2)=

• det (2A)=

Hint: (unless n=1) this is not just 2 det (A)
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Review

• If Ax= λx, then x is an eigenvector of A with eigenvalue λ.

• EG: x=
[

1
−2

]

is an eigenvector of A=
[

0 −2
−4 2

]

with eigenvalue 4

because Ax=
[

0 −2

−4 2

][

1

−2

]

=
[

4

−8

]

=4x

• Multiplication with A=
[

0 1
1 0

]

is reflection through the line y=x.

◦ A
[

1
1

]

=1 ·
[

1
1

]

So: x=
[

1

1

]

is an eigenvector with eigenvalue λ=1.

◦ A
[

−1
1

]

=
[

1
−1

]

=−1 ·
[

−1
1

]

So: x=
[

−1

1

]

is an eigenvector with eigenvalue λ=−1.

Example 1. Use your geometric understanding to find

the eigenvectors and eigenvalues of A=
[

1 0
0 0

]

.

Solution. A
[

x

y

]

=
[

x

0

]

i.e. multiplication with A is projection onto the x-axis.

• A
[

1
0

]

=1 ·
[

1
0

]

So: x=
[

1

0

]

is an eigenvector with eigenvalue λ=1.

• A
[

0
1

]

=
[

0
0

]

=0 ·
[

0
1

]

So: x=
[

0

1

]

is an eigenvector with eigenvalue λ=0.
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Example 2. Let P be the projection matrix corresponding to orthogonal projection
onto the subspace V . What are the eigenvalues and eigenvectors of P ?

Solution.

• For every vector x in V , Px=x.

These are the eigenvectors with eigenvalue 1.

• For every vector x orthogonal to V , Px=0.

These are the eigenvectors with eigenvalue 0.

Definition 3. Given λ, the set of all eigenvectors with eigenvalue λ is called the
eigenspace of A corresponding to λ.

Example 4. (continued) We saw that the projection matrix P has the two eigenvalues
λ=0, 1.

• The eigenspace of λ=1 is V .

• The eigenspace of λ=0 is V ⊥.

How to solve Ax=λx

Key observation:

Ax= λx

� Ax−λx=0

� (A− λI)x=0

This has a nonzero solution � det (A−λI) = 0

Recipe. To find eigenvectors and eigenvalues of A.

• First, find the eigenvalues λ using:

λ is an eigenvalue of A � det (A− λI)= 0

• Then, for each eigenvalue λ, find corresponding eigenvectors by

solving (A−λI)x= 0.

Example 5. Find the eigenvectors and eigenvalues of

A=

[

3 1
1 3

]

.
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Solution.

• A−λI =
[

3 1
1 3

]

−λ
[

1 0
0 1

]

=
[

3−λ 1
1 3−λ

]

• det (A−λI)=
∣

∣

∣

∣

3−λ 1
1 3−λ

∣

∣

∣

∣

=(3− λ)2− 1

=λ2
− 6λ+8=0 � λ1=2, λ2=4

This is the characteristic polynomial of A. Its roots are the eigenvalues of A.

• Find eigenvectors with eigenvalue λ1=2:

A−λ1I =
[

1 1
1 1

]

(A=
[

3 1
1 3

]

)

Solutions to
[

1 1
1 1

]

x=0 have basis
[

−1
1

]

.

So: x1=
[

−1
1

]

is an eigenvector with eigenvalue λ1=2.

All other eigenvectors with λ=2 are multiples of x1.

span

{
[

−1

1

]
}

is the eigenspace for eigenvalue λ=2.

• Find eigenvectors with eigenvalue λ2=4:

A−λ2I =
[

−1 1
1 −1

]

(A=
[

3 1
1 3

]

)

Solutions to
[

−1 1
1 −1

]

x= 0 have basis
[

1
1

]

.

So: x2=
[

1
1

]

is an eigenvector with eigenvalue λ2=4.

The eigenspace for eigenvalue λ=4 is span

{
[

1

1

]
}

.

Example 6. Find the eigenvectors and the eigenvalues of

A=





3 2 3
0 6 10

0 0 2



.

Solution.

• The characteristic polynomial is:

det (A−λI)=

∣

∣

∣

∣

∣

∣

3−λ 2 3
0 6−λ 10

0 0 2−λ

∣

∣

∣

∣

∣

∣

=(3−λ)(6−λ)(2−λ)

• A has eigenvalues 2, 3, 6. A=





3 2 3
0 6 10

0 0 2





The eigenvalues of a triangular matrix are its diagonal entries.

• λ1=2:

(A−λ1I)x=





1 2 3
0 4 10

0 0 0



x=0 � x1=





2
−5/2

1




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• λ2=3:

(A−λ2I)x=





0 2 3
0 3 10

0 0 −1



x= 0 � x2=





1
0
0





• λ3=6:

(A−λ3I)x=





−3 2 3
0 0 10

0 0 −4



x=0 � x3=





2
3
0





• In summary, A has eigenvalues 2,3,6 with corresponding eigenvectors





2
−5/2

1



,





1
0
0



,




2/3
1
0



.

These three vectors are independent. By the next result, this is always so.

Theorem 7. If x1,
 ,xm are eigenvectors of A corresponding to different eigenvalues,
then they are independent.

Why?

Suppose, for contradiction, that x1,
 ,xm are dependent.

By kicking out some of the vectors, we may assume that there is (up to multiples) only one linear
relation: c1x1+
 + cmxm=0.

Multiply this relation with A:

A(c1x1+
 + cmxm)= c1λ1x1+
 + cmλmxm=0

This is a second independent relation! Contradiction.

Practice problems

Example 8. Find the eigenvectors and eigenvalues of A=
[

0 −2
−4 2

]

.

Example 9. What are the eigenvalues of A=









2 0 0 0
−1 3 0 0
−1 1 3 0
0 1 2 4









?

No calculations!
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Review

• If Ax= λx, then x is an eigenvector of A with eigenvalue λ.

All eigenvectors (plus 0) with eigenvalue λ form the eigenspace of λ.

• λ is an eigenvalue of A � det (A− λI)

characteristic polynomial

=0.

Why? Because Ax=λx � (A−λI)x=0.

By the way: this means that the eigenspace of λ is just Nul(A−λI).

• E.g., if A=





3 2 3

0 6 10

0 0 2



 then det (A−λI) = (3− λ)(6−λ)(2−λ).

• Eigenvectors x1,
 ,xm of A corresponding to different eigenvalues are independent.

• By the way:

◦ product of eigenvalues = determinant

◦ sum of eigenvalues = “trace” (sum of diagonal entries)

Example 1. Find the eigenvalues of A as well as a basis for the corresponding eigen-
spaces, where

A=





2 0 0
−1 3 1
−1 1 3



.

Solution.

• The characteristic polynomial is:

det (A−λI) =

∣

∣

∣

∣

∣

∣

2−λ 0 0
−1 3−λ 1
−1 1 3−λ

∣

∣

∣

∣

∣

∣

= (2−λ)

∣

∣

∣

∣

3−λ 1
1 3−λ

∣

∣

∣

∣

= (2−λ)[(3−λ)2− 1]

=(2−λ)(λ− 2)(λ− 4)

• A has eigenvalues 2, 2, 4. A=





2 0 0

−1 3 1

−1 1 3





Since λ=2 is a double root, it has (algebraic) multiplicity 2.

• λ1=2:

(A−λ1I)x=





0 0 0

−1 1 1

−1 1 1



x= 0
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Two independent solutions: x1=





1

1

0



, x2=





0

−1

1





In other words: the eigenspace for λ=2 is span

{





1

1

0



,





0

−1

1





}

.

• λ2=4:

(A−λ2I)x=





−2 0 0

−1 −1 1

−1 1 −1



x=0 � x3=





0

1

1





• In summary, A has eigenvalues 2 and 4:

◦ eigenspace for λ=2 has basis





1

1

0



,





0

−1

1



,

◦ eigenspace for λ=4 has basis





0

1

1



.

An n×n matrix A has up to n different eigenvalues.

Namely, the roots of the degree n characteristic polynomial det (A−λI).

• For each eigenvalue λ, A has at least one eigenvector.

That’s because Nul(A−λI) has dimension at least 1.

• If λ has multiplicity m, then A has up to m (independent) eigenvectors for λ.

Ideally, we would like to find a total of n (independent) eigenvectors of A.

Why can there be no more than n eigenvectors?!

Two sources of trouble: eigenvalues can be

• complex numbers (that is, not enough real roots), or

• repeated roots of the characteristic polynomial.

Example 2. Find the eigenvectors and eigenvalues of

A=
[

0 −1

1 0

]

. Geometrically, what is the trouble?

Solution. A
[

x

y

]

=
[

−y

x

]

i.e. multiplication with A is rotation by 90◦ (counter-clock-
wise).

Which vector is parallel after rotation by 90◦? Trouble.
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Fix: work with complex numbers!

• det (A−λI)=
∣

∣

∣

∣

−λ −1

1 −λ

∣

∣

∣

∣

=λ2+1

So, the eigenvalues are λ1= i and λ2=−i.

• λ1= i:
[

−i −1

1 −i

]

x=
[

0

0

]

� x1=
[

i

1

]

Let us check:
[

0 −1

1 0

][

i

1

]

=
[

−1

i

]

= i

[

i

1

]

• λ2=−i:
[

i −1

1 i

]

x=
[

0

0

]

� x2=
[

−i

1

]

Example 3. Find the eigenvectors and eigenvalues of A=
[

1 1

0 1

]

. What is the trouble?

Solution.

• det (A−λI)=
∣

∣

∣

∣

1−λ 1

0 1−λ

∣

∣

∣

∣

=(1− λ)2

So: λ=1 is the only eigenvalue (it has multiplicity 2).

• (A−λI)x=
[

0 1

0 0

]

x=0 � x1=
[

1

0

]

So: the eigenspace is span
{

[

1

0

]

}

. Only dimension 1!

• Trouble: only 1 independent eigenvector for a 2× 2 matrix

This kind of trouble cannot really be fixed.

We have to lower our expectations and look for generalized eigenvectors .

These are solutions to (A−λI)2x=0, (A−λI)3x=0, 


Practice problems

Example 4. Find the eigenvectors and eigenvalues of A=





1 2 1

0 −5 0

1 8 1



.
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Review

• Eigenvector equation: Ax=λx � (A− λI)x=0

λ is an eigenvalue of A � det (A−λI)

characteristic polynomial

=0.

• An n×n matrix A has up to n different eigenvalues λ.

◦ The eigenspace of λ is Nul(A−λI).

That is, all eigenvectors of A with eigenvalue λ.

◦ If λ has multiplicity m, then A has up to m eigenvectors for λ.

At least one eigenvector is guaranteed (because det (A−λI)= 0).

• Test yourself! What are the eigenvalues and eigenvectors?

◦
[

1 0

0 1

]

λ=1, 1 (ie. multiplicity 2), eigenspace is R2

◦
[

0 0

0 0

]

λ=0, 0, eigenspace is R2

◦
[

2 1

0 2

]

λ=2, 2, eigenspace is span
{

[

1

0

]

}

Diagonalization

Diagonal matrices are very easy to work with.

Example 1. For instance, it is easy to compute their powers.

If A=





2 0 0

0 3 0

0 0 4



, then A2=







22

32

42





 and A100 =







21 0 0

31 0 0

41 0 0







Example 2. If A=
[

6 −1

2 3

]

, then A100 =?

Solution.

• Characteristic polynomial:
∣

∣

∣

∣

6−λ −1

2 3−λ

∣

∣

∣

∣

=
 =(λ− 4)(λ− 5)

◦ λ1=4:
[

2 −1

2 −1

]

v=0 � eigenvector v1=
[

1

2

]

◦ λ2=5:
[

1 −1

2 −2

]

� eigenvector v2=
[

1

1

]

• Key observation: A100
v1=λ1

100
v1 and A100

v2=λ2
100

v2

For A100, we need A100
[

1

0

]

and A100
[

0

1

]

.
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•
[

1

0

]

= c1v1+ c2v2=−
[

1

2

]

+2
[

1

1

]

� A100
[

1

0

]

=A100
(

−
[

1

2

]

+2
[

1

1

]

)

=−4100
[

1

2

]

+2 · 5100
[

1

1

]

� A100 =
[

2 · 51 0 0 − 41 0 0 ∗

2 · 51 0 0 − 2 · 41 0 0 ∗

]

• We find the second column of A100 likewise. Left as exercise!

The key idea of the previous example was to work with respect to a basis given by the
eigenvectors.

• Put the eigenvectors x1,
 ,xn as columns into a matrix P .

Axi=λixi � A





| |
x1 � xn

| |



 =





| |
λ1x1 � λnxn

| |





=





| |
x1 � xn

| |









λ1

�

λn





• In summary: AP =PD

Suppose that A is n×n and has independent eigenvectors v1,
 ,vn.

Then A can be diagonalized as A=PDP−1.

• the columns of P are the eigenvectors

• the diagonal matrix D has the eigenvalues on the diagonal

Such a diagonalization is possible if and only if A has enough eigenvectors.
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Example 3.

Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34,


By the way: “not a universal law but only a fascinatingly prevalent tendency” — Coxeter

Did you notice:
13

8
= 1.625,

21

13
= 1.615,

34

21
= 1.619, 


The golden ratio ϕ= 1.618
 Where’s that coming from?

By the way, this ϕ is the most irrational number (in a precise sense).

• Fn+1=Fn+Fn−1 �

[

Fn+1

Fn

]

=
[

1 1

1 0

][

Fn

Fn−1

]

• Hence:
[

Fn+1

Fn

]

=
[

1 1

1 0

]

n
[

F1

F0

]

[

F1

F0

]

=
[

1

0

]

• But we know how to compute
[

1 1

1 0

]

n

or
[

1 1

1 0

]

n
[

1

0

]

!

Solution. (Exercise to fill in all details!)

• The characteristic polynomial of A=
[

1 1

1 0

]

is λ2−λ− 1.

• The eigenvalues are λ1 =
1+ 5

√

2
≈ 1.618 (the golden mean!) and λ2 =

1− 5
√

2
≈

−0.618.

• Corresponding eigenvectors: v1=
[

λ1

1

]

, v2=
[

λ2

1

]

• Write
[

1

0

]

= c1 v1+ c1v2. (c1=
1

5
√ , c2=−

1

5
√ )

•
[

Fn+1

Fn

]

=An

[

1

0

]

=λ1
nc1v1+λ2

nc2v2

• Hence, Fn=λ1
nc1+λ2

nc2=
1

5
√

[(

1+ 5
√

2

)

n

−
(

1− 5
√

2

)

n
]

.

That’s Binet’s formula.

• But |λ2|< 1, and so Fn≈ λ1
nc1=

1

5
√

(

1+ 5
√

2

)

n

.

In fact, Fn= round

(

1

5
√

(

1+ 5
√

2

)

n
)

. Don’t you feel powerful!?

Practice problems

Problem 1. Find, if possible, the diagonalization of A=
[

0 −2

−4 2

]

.
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Review for Midterm 3

• Bring a number 2 pencil to the exam!

• Extra help session: today and tomorrow, 4–7pm, in AH 441

• Room assignments for Thursday, Nov 20, 7-8:15pm:

◦ if your last name starts with A-E: 213 Greg Hall

◦ if your last name starts with F-L: 100 Greg Hall

◦ if your last name starts with M-Sh: 66 Library

◦ if your last name starts with Si-Z: 103 Mumford Hall

• Big topics:

◦ Orthogonal projections

◦ Least squares

◦ Gram–Schmidt

◦ Determinants

◦ Eigenvalues and eigenvectors

Orthogonal projections

• If v1,
 , vn is an orthogonal basis of V , and x is in V , then

x= c1v1+
 + cnvn with cj=
〈x,vj〉

〈vj ,vj〉
.

• Suppose that V is a subspace of W , and x is in W , then the orthogonal projection
of x onto V is given by

x̂= c1v1+
 + cnvn with cj=
〈x,vj〉

〈vj ,vj〉
.

◦ The basis v1,
 ,vn has to be orthogonal for this formula!!

◦ This decomposes x= x̂
�

in V

+ x⊥
�

in V ⊥

, where the error x⊥ is orthogonal to V . (this

decomposition is unique)

v1

v2

x

x̂

x
⊥
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◦ The corresponding projection matrix represents x � x̂ with respect to the
standard basis.

Example 1.

(a) What is the orthogonal projection of





1
1
0



 onto span

{





1
0
0



,





0
1
0





}

?

Solution: The projection is





1
1
0



.

(b) What is the orthogonal projection of





1
1
0



 onto span

{





1
−1
0



,





1
−1
1





}

?

Solution: The projection is





0
0
0



.

Wrong approach!!
〈




1

1

0



,





1

−1

0



〉

〈




1

−1

0



,





1

−1

0



〉





1
−1
0



+
〈




1

1

0



,





1

−1

1



〉

〈




1

−1

1



,





1

−1

1



〉





1
−1
1



=





0
0
0





This is wrong because





1

−1

0



,





1

−1

1



 are not orthogonal. (See next example!)

(c) What is the orthogonal projection of





1
−1
0



 onto span

{





1
−1
0



,





1
−1
1





}

?

Solution: The projection is





1
−1
0



.

Wrong!!
〈




1

−1

0



,





1

−1

0



〉

〈




1

−1

0



,





1

−1

0



〉





1
−1
0



+
〈




1

−1

0



,





1

−1

1



〉

〈




1

−1

1



,





1

−1

1



〉





1
−1
1



=





1
−1
0



+
2

3





1
−1
1





Corrected :





1
−1
0



,





1
−1
1





�





1
−1
0



,





0
0
1



 (for instance, using Gram–Schm idt)

〈




1

−1

0



,





1

−1

0



〉

〈




1

−1

0



,





1

−1

0



〉





1
−1
0



+
〈




1

−1

0



,





0

0

1



〉

〈




1

−1

1



,





0

0

1



〉





0
0
1



=





1
−1
0



+0





0
0
1





(d) What is the projection matrix corresponding to orthogonal projection onto

span

{





0
1
0



,





1
1
0





}

?

Solution: The projection matrix is





1 0 0
0 1 0
0 0 0



.

What would Gram–Schmidt do?





0
1
0



,





1
1
0





�





0
1
0



,





1
0
0





(e) What is the orthogonal projection of





1
1
1



 onto span

{





0
1
0



,





1
1
0





}

?
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Solution: The projection is





1 0 0
0 1 0
0 0 0









1
1
1



=





1
1
0



.

• The space of all nice functions with period 2π has the natural inner product 〈f ,

g〉=
∫

0

2π
f(x)g(x)dx. [in R

n: 〈x, y〉= x1y1+
 + xnyn]

• The functions

1, cos (x), sin (x), cos (2x), sin (2x),


are an orthogonal basis for this space.

• Expanding a function f(x) in this basis produces its Fourier series

f(x)= a0+ a1cos(x) + b1sin(x)+ a2cos(2x)+ b2sin(2x)+�

Example 2. How can we compute b2?

Solution.

b2sin(2x) is the orthogonal projection of f onto the span of sin (2x).

Hence:

b2 =
〈f(x), sin (2x)〉

〈sin (2x), sin (2x)〉
=

∫

0

2π
f(x)sin(2x)dx

∫

0

2π
sin2 (2x)dx

Least squares

• x̂ is a least squares solution of the system Ax= b.

� x̂ is such that Ax̂ − b is as small as possible.

� ATAx̂=ATb (the normal equations)

Example 3. Find the least squares line for the data points (2, 1), (5, 2), (7, 3), (8, 3).

Solution.

Looking for β1, β2 such that the line y= β1+ β2x best fits the data.

The equations yi= β1+ β2xi in matrix form:








1 x1

1 x2

1 x3

1 x4









design matrix X

[

β1

β2

]

=









y1
y2
y3
y4









observation
vector y

Armin Straub
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Here, we need to find a least squares solution to








1 2
1 5
1 7
1 8









[

β1

β2

]

=









1
2
3
3









.

XTX =

[

1 1 1 1
2 5 7 8

]









1 2
1 5
1 7
1 8









=

[

4 22

22 142

]

XT
y=

[

1 1 1 1
2 5 7 8

]









1
2
3
3









=

[

9
57

]

Solving
[

4 22

22 142

]

β̂ =
[

9
57

]

, we find
[

β1

β2

]

=
[

2/7
5/14

]

.

Gram–Schmidt

Recipe. (Gram–Schmidt orthonormalization)

Given a basis a1,
 ,an, produce an orthonormal basis q1,
 , qn.

b1=a1, q1=
b1

‖b1‖

b2=a2− 〈a2, q1〉q1, q2=
b2

‖b2‖

b3=a3−〈a3, q1〉q1− 〈a3, q2〉q2, q3=
b3

‖b3‖



• An orthogonal matrix is a square matrix Q with orthonormal columns.

Equivalently, QTQ= I (also true for non-square matrices).

• Apply Gram–Schmidt to the (independent) columns of A to obtain the QR decom-
position A=QR.

◦ Q has orthonormal columns (the output vectors of Gram–Schmidt)

◦ R=QTA is upper triangular

Armin Straub
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Example 4. Find the QR decomposition of A=





1 1
2 0
0 1



.

Solution. We apply Gram–Schmidt to the columns of A:

1

5
√





1
2
0



= q1





1
0
1



− 〈





1
0
1



, q1〉q1=





1
0
1



−
1

5
√ 1

5
√





1
2
0



=





4/5
−2/5

1



,
1

9/5
√





4/5
−2/5

1



= q2

Hence: Q= [ q1 q2 ] =













1

5
√ 4

45
√

2

5
√ −

2

45
√

0
5

45
√













And: R=QTA=







1

5
√ 2

5
√ 0

4

45
√ −

2

45
√ 5

45
√











1 1
2 0
0 1



=







5

5
√ 1

5
√

0
9

45
√







Determinants

• A is invertible � det (A)� 0

• det (AB) = det (A)det(B)

• det (A−1)=
1

det (A)

• det (AT)= det (A)

• The determinant is characterized by:

◦ the normalization det I =1,

◦ and how it is affected by elementary row operations:

− (replacement) Add one row to a multiple of another row.

Does not change the determinant.

− (interchange) Interchange two rows.

Reverses the sign of the determinant.

− (scaling) Multiply all entries in a row by s.

Multiplies the determinant by s.
∣

∣

∣

∣

∣

∣

∣

∣

1 2 3 4
0 2 1 5
0 0 2 1
0 0 3 5

∣

∣

∣

∣

∣

∣

∣

∣

@

R4→R4− 3

2
R3

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 2 3 4
0 2 1 5
0 0 2 1

0 0 0
7

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

=1 · 2 · 2 ·
7

2
= 14
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• Cofactor expansion is another way to compute determinants.
∣

∣

∣

∣

∣

∣

1 2 0

3 −1 2

2 0 1

∣

∣

∣

∣

∣

∣

=−2 ·

∣

∣

∣

∣

∣

∣

−

3 2

2 1

∣

∣

∣

∣

∣

∣

+(−1) ·

∣

∣

∣

∣

∣

∣

1 0

+

2 1

∣

∣

∣

∣

∣

∣

− 0 ·

∣

∣

∣

∣

∣

∣

1 0

3 2

−

∣

∣

∣

∣

∣

∣

= − 2 · (−1)+ (−1) · 1− 0= 1

Example 5. What is

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 4
−1 2 2 5
0 3 3 1
2 0 0 5

∣

∣

∣

∣

∣

∣

∣

∣

?

Solution. The determinant is 0 because the matrix is not invertible (second and third
column are the same).

Eigenvalues and eigenvectors

• If Ax= λx, then x is an eigenvector of A with eigenvalue λ.

• λ is an eigenvalue of A � det (A− λI)

characteristic polynomial

=0.

Why? Because Ax=λx � (A−λI)x=0.

• The eigenspace of λ is Nul(A−λI).

It consists of all eigenvectors (plus 0) with eigenvalue λ.

• Eigenvectors x1,
 ,xm of A corresponding to different eigenvalues are independent.

• Useful for checking: sum of eigenvalues = sum of diagonal entries
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Welcome back!

• The final exam is on Friday, December 12, 7-10pm

If you have a conflict (overlapping exam, or more than 2 exams within 24h), please email
Mahmood until Sunday to sign-up for the Monday conflict.

• What are the eigenspaces of
[

1 2
0 3

]

?

◦ λ=1 has eigenspace Nul

(

[

0 2
0 2

]

)

= span

{

[

1
0

]

}

◦ λ=3 has eigenspace Nul

(

[

−2 2
0 0

]

)

= span

{

[

1
1

]

}

◦ INCORRECT: eigenspace span

{

[

1
0

]

,
[

1
1

]

}

Transition matrices

Powers of matrices can describe transition of a system.

Example 1. (review)

• Fibonacci numbers Fn: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34,


• Fn+1=Fn+Fn−1 �

[

Fn+1

Fn

]

=
[

1 1
1 0

][

Fn

Fn−1

]

• Hence:
[

Fn+1

Fn

]

=
[

1 1
1 0

]n[ F1

F0

]

Example 2. Consider a fixed population of people with or without a job. Suppose that,
each year, 50% of those unemployed find a job while 10% of those employed loose their
job.

What is the unemployment rate in the long term equilibrium?

Solution.

employed no job0.1
0.9

0.5

0.5

xt: proportion of population employed at time t (in years)

yt: proportion of population unemployed at time t

[

xt+1

yt+1

]

=

[

0.9xt+ 0.5yt
0.1xt+ 0.5yt

]

=

[

0.9 0.5

0.1 0.5

][

xt

yt

]

The matrix
[

0 .9 0 .5

0 .1 0 .5

]

is a Markov matrix. Its columns add to 1 and it has no negative entries.
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[

x∞

y∞

]

is an equilibrium if
[

x∞

y∞

]

=
[

0.9 0.5

0.1 0.5

][

x∞

y∞

]

.

In other words,
[

x∞

y∞

]

is an eigenvector with eigenvalue 1.

Eigenspace of λ=1: Nul

(

[

−0.1 0.5

0.1 −0.5

]

)

= span

{

[

5
1

]

}

Since x∞+ y∞=1, we conclude that
[

x∞

y∞

]

=
[

5/6
1/6

]

.

Hence, the unemployment rate in the long term equilibrium is 1/6.

Page rank

Google’s success is based on an algorithm to rank webpages, the Page rank, named
after Google founder Larry Page.

The basic idea is to determine how likely it is that a web user randomly gets to a given
webpage. The webpages are then ranked by these probabilities.

Example 3. Suppose the internet consisted of only the four webpages A,B,C,D linked
as in the following graph:

Imagine a surfer following these links at random.

For the probability PRn(A) that she is at A (after n steps), we add:

• the probability that she was at B (at exactly one time step before),

and left for A, (that’s PRn−1(B) ·
1

2
)

• the probability that she was at C, and left for A,

• the probability that she was at D, and left for A.

A B

C D

• Hence: PRn(A)=PRn−1(B) ·
1

2
+PRn−1(C) ·

1

1
+PRn−1(D) ·

0

1

•









PRn(A)
PRn(B)
PRn(C)
PRn(D)









=















0
1

2
1 0

1

3
0 0 0

1

3
0 0 1

1

3

1

2
0 0

























PRn−1(A)
PRn−1(B)
PRn−1(C)
PRn−1(D)











• The PageRank vector









PR(A)
PR(B)
PR(C)
PR(D)









=









PR∞(A)
PR∞(B)
PR∞(C)
PR∞(D)









is the long-term equilibrium.

It is an eigenvector of the Markov matrix with eigenvalue 1.

•















−1
1

2
1 0

1

3
−1 0 0

1

3
0 −1 1

1

3

1

2
0 −1















>

RREF













1 0 0 −2

0 1 0 −
2

3

0 0 1 −
5

3

0 0 0 0













� eigenspace of λ=1 spanned by













2
2

3
5

3

1












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�









PR(A)
PR(B)
PR(C)
PR(D)









=
3

16













2
2

3
5

3

1













=









0.375

0.125

0.313

0.188









This the PageRank vector.

• The corresponding ranking of the webpages is A,C,D,B.

Practice problems

Problem 1. Can you see why 1 is an eigenvalue for every Markov matrix?

Problem 2. (just for fun) The real web contains pages which have no outgoing links.
In that case, our random surfer would get “stuck” (the transition matrix is not a Markov
matrix). Do you have an idea how to deal with this issue?
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Review

• We model a surfer randomly clicking webpages.

Let PRn(A) be the probability that he is at A (after n steps).

PRn(A)=PRn−1(B) ·
1

2
+PRn−1(C) ·

1

1
+PRn−1(D) ·

0

1









PRn(A)
PRn(B)
PRn(C)
PRn(D)









=















0
1

2
1 0

1

3
0 0 0

1

3
0 0 1

1

3

1

2
0 0















=T











PRn−1(A)
PRn−1(B)
PRn−1(C)
PRn−1(D)











A B

C D

• The transition matrix T is a Markov matrix.

Its columns add to 1 and it has no negative entries.

• The Page rank of page A is PR(A)=PR∞(A). (assum ing the lim it exists)

It is the probability that the surfer is at page A after n steps (with n→∞).

• The PageRank vector









PR(A)
PR(B)
PR(C)
PR(D)









satisfies









PR(A)
PR(B)
PR(C)
PR(D)









=T









PR(A)
PR(B)
PR(C)
PR(D)









.

It is an eigenvector of the transition matrix T with eigenvalue 1.

•















−1
1

2
1 0

1

3
−1 0 0

1

3
0 −1 1

1

3

1

2
0 −1















>

RREF













1 0 0 −2

0 1 0 −
2

3

0 0 1 −
5

3

0 0 0 0













� eigenspace of λ=1 spanned by













2
2

3

5

3

1













�









PR(A)
PR(B)
PR(C)
PR(D)









=
3

16













2
2

3

5

3

1













=









0.375

0.125

0.313

0.188









This the PageRank vector.

• The corresponding ranking of the webpages is A,C,D,B.

Remark 1. In practical situations, the system might be too large for finding the eigen-
vector by elimination.

• Google reports having met about 60 trillion webpages

Google’s search index is over 100,000,000 gigabytes

Number of Google’s servers secret; about 2,500,000

More than 1,000,000,000 websites (i.e. hostnames; about 75% not active)

Armin Straub
astraub@illinois.edu
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• Thus we have a gigantic but very sparse matrix.

An alternative to elimination is the power method:

If T is an (acyclic and irreducible) Markov matrix, then for any v0 the vectors Tn
v0

converge to an eigenvector with eigenvalue 1.

Here: T =















0
1

2
1 0

1

3
0 0 0

1

3
0 0 1

1

3

1

2
0 0























PR(A)
PR(B)
PR(C)
PR(D)









=









0.375

0.125

0.313

0.188









T









1/4
1/4
1/4
1/4









=









3/8
1/12
1/3
5/24









=









0.375

0.083

0.333

0.208









Note that the ranking of the webpages is already A,C,D,B if we stop here.

T 2









1/4
1/4
1/4
1/4









=









0.375

0.125

0.333

0.167









T 3









1/4
1/4
1/4
1/4









=









0.396

0.125

0.292

0.188









Remark 2.

• If all entries of T are positive, then the power method is guaranteed to work.

• In the context of PageRank, we can make sure that this is the case, by replacing T

with

(1− p) ·

















0
1

2
1 0

1

3
0 0 0

1

3
0 0 1

1

3

1

2
0 0

















+ p ·

















1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

















.

Just to make sure: still a Markov matrix, now with positive entries

Google used to use p= 0.15.

• Why does Tn
v0 converge to an eigenvector with eigenvalue 1?

Under the assumptions on T , its other eigenvalues λ satisfy |λ|< 1.

Now, think in terms of a basis x1,
 ,xn of eigenvectors:

Tm(c1x1+
 + cnxn)= c1λ1
m
x1+
 + cnλn

m
xn

As m increases, the terms with λi
m for λi� 1 go to zero, and what is left over is an eigenvector

with eigenvalue 1.
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Linear differential equations

Example 3. Which functions y(t) satisfy the differential equation y ′= y?

Solution: y(t)= et and, more generally, y(t) =Cet. (And nothing else.)

Recall from Calculus the Taylor series et=1+ t+
t
2

2!
+

t
3

3!
+


Example 4. The differential equation y ′=ay with initial condition y(0)=C is solved
by y(t)=Ceat. (This solution is unique.)

Why? Because y ′(t)= aCeat= ay(t) and y(0)=C.

Example 5. Our goal is to solve (systems of) differential equations like:

y1
′ = 2y1

y2
′ = −y1 +3y2 +y3

y3
′ = −y1 +y2 +3y3

y1(0) = 1
y2(0) = 0
y3(0) = 2

In matrix form:

y
′=





2 0 0
−1 3 1
−1 1 3



y , y(0)=





1
0
2





Key idea: to solve y
′=Ay, introduce eAt
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Review of diagonalization

• If Ax= λx, then x is an eigenvector of A with eigenvalue λ.

• Put the eigenvectors x1,
 ,xn as columns into a matrix P .

Axi=λixi � A





| |
x1 � xn

| |



 =





| |
λ1x1 � λnxn

| |





=





| |
x1 � xn

| |









λ1

�

λn





• In summary: AP =PD

Let A be n×n with independent eigenvectors x1,
 ,xn.

Then A can be diagonalized as A=PDP−1.

• the columns of P are the eigenvectors

• the diagonal matrix D has the eigenvalues on the diagonal

Example 6. Diagonalize the following matrix, if possible.

A=





2 0 0
−1 3 1
−1 1 3





Solution.

• A has eigenvalues 2 and 4. (We did that in an earlier class!)

◦ λ=2:





0 0 0
−1 1 1
−1 1 1





� eigenspace span

{





1
1
0



,





1
0
1





}

◦ λ=4:





−2 0 0
−1 −1 1
−1 1 −1





� eigenspace span

{





0
1
1





}

• P =





1 1 0
1 0 1
0 1 1



 and D=





2
2

4





• A=PDP−1

For many applications, it is not needed to compute P−1 explicitly.

• We can check this by verifying AP =PD:





2 0 0
−1 3 1
−1 1 3









1 1 0
1 0 1
0 1 1



=





1 1 0
1 0 1
0 1 1









2
2

4




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Review

Let A be n×n with independent eigenvectors x1,
 ,xn.

Then A can be diagonalized as A=PDP−1.

• the columns of P are the eigenvectors

• the diagonal matrix D has the eigenvalues on the diagonal

Why? We need to see that AP =PD:

Axi=λixi � A





| |
x1 � xn

| |



 =





| |
λ1x1 � λnxn

| |





=





| |
x1 � xn

| |









λ1

�

λn





• The differential equation y ′= ay with initial condition y(0)=C

is solved by y(t)=Ceat.

Recall from Calculus the Taylor series et=1+ t+
t2

2!
+

t3

3!
+


• Goal: similar treatment of systems like:

y
′=





2 0 0
−1 3 1
−1 1 3



y , y(0)=





1
2
1





Definition 1. Let A be n×n. The matrix exponential is

eA= I +A+
1

2!
A2+

1

3!
A3+�

Then:
d

dt
eAt=AeAt

Why?
d

dt
eAt =

d

dt

(

I +At+
1

2!
A2t2+

1

3!
A3t3+�

)

=A+
1

1!
A2t+

1

2!
A3t2+� =AeAt

The solution to y
′=Ay, y(0)= y0 is y(t)= eAt

y0.

Why? Because y
′(t)=AeAt

y0=Ay(t) and y(0)= e0Ay0= y0.

Example 2. If A=
[

2 0

0 5

]

, then:

eA=

[

1 0
0 1

]

+

[

2 0
0 5

]

+
1

2!

[

22 0

0 52

]

+� =

[

e2 0

0 e5

]

eAt=

[

1 0
0 1

]

+

[

2t 0
0 5t

]

+
1

2!

[

(2t)2 0

0 (5t)2

]

+� =

[

e2t 0

0 e5t

]

Clearly, this works to obtain eD for any diagonal matrix D.
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Example 3. Suppose A=PDP−1. Then, what is An?

Solution.

First, note that A2=(PDP−1)(PDP−1)=PD2P−1.

Likewise, An=PDnP−1.

(The point being that Dn is trivial to compute because D is diagonal.)

Theorem 4. Suppose A=PDP−1. Then, eA=PeDP−1.

Why? Recall that An=PDnP−1.

eA = I +A+
1

2!
A2+

1

3!
A3+�

= I +PDP−1+
1

2!
PD2P−1+

1

3!
PD3P−1+�

= P

(

I +D+
1

2!
D2+

1

3!
D3+�

)

P−1=PeDP−1

Example 5. Solve the differential equation

y
′=

[

0 1
1 0

]

y , y(0)=

[

1
0

]

.

Solution. The solution to y
′=Ay, y(0)= y0 is y(t)= eAt

y0.

• Diagonalize A=
[

0 1

1 0

]

:

◦

∣

∣

∣

∣

−λ 1

1 −λ

∣

∣

∣

∣

= λ2
− 1, so the eigenvalues are ±1

◦ λ=1 has eigenspace Nul
(

[

−1 1

1 −1

]

)

= span
{

[

1

1

]

}

◦ λ=−1 has eigenspace Nul
(

[

1 1

1 1

]

)

= span
{

[

−1

1

]

}

◦ Hence, A=PDP−1 with P =
[

1 −1

1 1

]

and D=
[

1 0

0 −1

]

.

• Compute the solution y= eAt
y0:

y = PeDtP−1
y0

=

[

1 −1
1 1

]

[

et 0
0 e−t

]

1

2

[

1 1
−1 1

][

1
0

]

=
1

2

[

1 −1
1 1

]

[

et 0

0 e−t

]

[

1
−1

]

=
1

2

[

1 −1
1 1

]

[

et

−e−t

]

=
1

2

[

et+ e−t

et− e−t

]
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Example 6. Solve the differential equation

y
′=





2 0 0
−1 3 1
−1 1 3



y , y(0)=





1
2
1



.

Solution.

• Recall that the solution to y
′=Ay, y(0)= y0 is y= eAt

y0.

• A has eigenvalues 2 and 4. (We did that in an earlier class!)

◦ λ=2:





0 0 0

−1 1 1

−1 1 1





� eigenspace span

{





1

1

0



,





1

0

1





}

◦ λ=4:





−2 0 0

−1 −1 1

−1 1 −1





� eigenspace span

{





0

1

1





}

• A= PDP−1 with P =





1 1 0

1 0 1

0 1 1



, D=





2

2

4





• Compute the solution y= eAt
y0:

y= eAt
y0 = PeDtP−1

y0

=





1 1 0
1 0 1
0 1 1











e2t

e2t

e
4t











1 1 0
1 0 1
0 1 1





−1




1
2
1





=





1 1 0
1 0 1
0 1 1











e2t

e2t

e4t











1
0
1





=





1 1 0
1 0 1
0 1 1











e2t

0

e4t






=







e2t

e2t+ e4t

e4t







Check (optional) that y=







e2t

e2t + e4t

e4t






indeed solves the original problem:

y
′=







2e2t

2e2t+4e4t

4e4t






@

!





2 0 0
−1 3 1
−1 1 3











e2t

e2t+ e4t

e4t







Remark 7. The matrix exponential shares many other properties of the usual exponen-
tial:

• eA is invertible and (eA)−1= e−A

• eAeB= eA+B= eBeA if AB=BA
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Ending the Halloween torture

perimeter = 4

perimeter = π

perimeter = 4

perimeter = π

perimeter = 4

perimeter = π

perimeter = 4

perimeter = π

perimeter = 4

perimeter = π

• Length of the graph of y(x) on [a, b] is
∫

a

b
1+ y ′(x)2

√

dx.

• While the blue curve does converge to the circle,
its derivative does not converge!

• In the language of functional analysis:
The linear map D: y� y ′ is not continuous!

(That is, two functions can be close without their derivatives being close.)

Even more extreme examples are provided by fractals. The Koch snowflake:
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• Its perimeter is infinite!

Why? At each iteration, the perimeter gets multiplied by 4/3.

• Its boundary has dimension log3 (4)≈ 1.262!!

the effect of zooming in by a factor of 3
×3 d=1= log3 (3)

×9 d=2= log3 (3)

×4 d= log3 (4)

• Such fractal behaviour is also observed when attempting to measure the length of
a coastline: the measured length increases by a factor when using a smaller scale.

See: http://en.wikipedia.org/wiki/Coastline_paradox
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