Midterm #1

Please print your name:

No notes, calculators or tools of any kind are permitted. There are 30 points in total. You need to show work to receive full credit.

Good luck!

Problem 1. (10 points) Let $M = \begin{bmatrix} 3 & 1 \\ 5 & -1 \end{bmatrix}$.

- (a) Compute e^{Mt} .
- (b) Solve the initial value problem $\mathbf{y}' = M\mathbf{y}$ with $\mathbf{y}(0) = \begin{bmatrix} 0 \\ 6 \end{bmatrix}$.
- (c) Determine all equilibrium points of $\left[\begin{array}{c} x\\y\end{array}\right]'=M\left[\begin{array}{c} x\\y\end{array}\right]$ and their stability.

Problem 2. (8 points) Fill in the blanks. None of the problems should require any computation!

(a) Determine a (homogeneous linear) recurrence equation satisfied by $a_n = (3n+2)4^n + 7$.

You can use the operator N to write the recurrence. No need to simplify, any form is acceptable.

(b) Let y_p be any solution to the inhomogeneous linear differential equation $y'' - 9y = 4xe^x - 5e^{2x}$. Find a homogeneous linear differential equation which y_p solves.

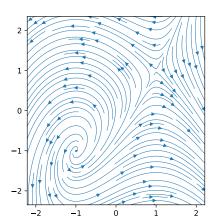
You can use the operator D to write the DE. No need to simplify, any form is acceptable.

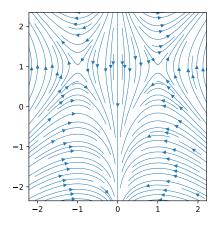
(c) Consider a homogeneous linear differential equation with constant real coefficients which has order 4. Suppose $y(x) = 3x - 5e^{2x}\cos(x)$ is a solution. Write down the general solution.

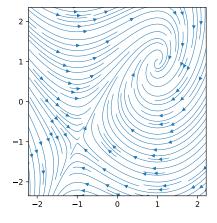
(d) If $M^n = \begin{bmatrix} 2 - 3^n & -2 + 2 \cdot 3^n \\ 1 - 3^n & -1 + 2 \cdot 3^n \end{bmatrix}$, then $e^{Mx} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$

Problem 3. (3 points)

- (a) Circle the phase portrait below which belongs to $\frac{dx}{dt} = x y$, $\frac{dy}{dt} = 1 x^2$.
- (b) Determine all equilibrium points and classify the stability of each.







Problem 4. (3 points) Consider the following system of initial value problems:

$$y_1'' - 4y_1' = 3y_2$$

 $y_2'' + 2y_2 = 5y_1'$ $y_1(0) = 7$, $y_1'(0) = 1$, $y_2(0) = 2$, $y_2'(0) = 0$

Write it as a first-order initial value problem in the form $\boldsymbol{y}' = M\boldsymbol{y}, \ \boldsymbol{y}(0) = \boldsymbol{c}.$

Problem 5. (1+4+1 points) Consider the sequence a_n defined by $a_{n+2} = a_{n+1} + 2a_n$ and $a_0 = 1$, $a_1 = 8$.

- (a) The next two terms are $a_2 =$ and $a_3 =$
- (b) A Binet-like formula for a_n is $a_n = \begin{bmatrix} & & \\ & & \\ & & \\ & & \end{bmatrix}$, and $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \begin{bmatrix} & & \\ & & \\ & & \\ & & \end{bmatrix}$

(extra scratch paper)