
Notes for Lecture 31 Wed, 4/16/2025

Partial differential equations

The heat equation

We wish to describe one-dimensional heat flow.
Comment. If this sounds very specialized, it might help to know that the heat equation is also used, for instance,
in probability (Brownian motion), financial math (Black-Scholes), or chemical processes (diffusion equation).

Let u(x; t) describe the temperature at time t at position x.
If we model a heated rod of length L, then x2 [0; L].
Notation. u(x; t) depends on two variables. When taking derivatives, we will use the notations ut=

@

@t
u and

uxx=
@2

@x2
u for first and higher derivatives.

Experience tells us that heat flows from warmer to cooler areas and has an averaging effect.
Make a sketch of some temperature profile u(x; t) for fixed t.

As t increases, we expect maxima (where uxx < 0) of that profile to flatten out (which means
that ut<0); similarly, minima (where uxx>0) should go up (meaning that ut>0). The simplest
relationship between ut and uxx which conforms with our expectation is ut= kuxx, with k > 0.

(heat equation)

ut= kuxx

Note that the heat equation is a linear and homogeneous partial differential equation.
In particular, the principle of superposition holds: if u1 and u2 solve the heat equation, then so does c1u1+ c2u2.

Higher dimensions. In higher dimensions, the heat equation takes the form ut = k(uxx + uyy) or ut =

k(uxx+uyy+uzz). The heat equation is often written as ut=k�u, where �=
@2

@x2
+

@2

@y2
+

@2

@z2
is the Laplace

operator you may know from Calculus III.
The Laplacian �u is also often written as �u=r2u. The operator r= (@/@x; @/@y) is pronounced �nabla�
(Greek for a certain harp) or �del� (Persian for heart), and r2 is short for the inner product r �r.

Let us think about what is needed to describe a unique solution of the heat equation.

� Initial condition at t=0: u(x; 0)= f(x) (IC)
This specifies an initial temperature distribution at time t=0.

� Boundary condition at x=0 and x=L: (BC)
Assuming that heat only enters/exits at the boundary (think of our rod as being insulated, except
possibly at the two ends), we need some condition on the temperature at the ends. For instance:

� u(0; t)=A, u(L; t)=B

This models a rod where one end is kept at temperature A and the other end at temperature B.

� ux(0; t)=ux(L; t)=0
This models a rod whose ends are insulated as well.

Under such assumptions, our physical intuition suggests that there should be a unique solution.
Important comment. We can always transform the case u(0; t)=A, u(L; t)=B into u(0; t)=u(L; t)= 0 by
using the fact that u(t; x)= ax+ b solves ut= kuxx. Can you spell this out?
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Example 160. To get a feeling, let us find some solutions to ut= kuxx.
� u(x; t)= ax+ b is a solution.

� For instance, u(x; t)= ektex is a solution.
[Not a very interesting one for modeling heat flow because it increases exponentially in time.]

� More interesting are u(x; t)= e¡ktcos(x) and u(x; t)= e¡ktsin(x).

� More generally, e¡k�
2tcos(�x) and e¡k�

2tsin(�x) are solutions.

� Can you find further solutions?

Important observation. This reveals a strategy for solving the heat equation together with the
following boundary and initial conditions:

ut= kuxx (PDE)
u(0; t)=u(L; t)= 0 (BC)
u(x; 0)= f(x); x2 (0; L) (IC)

Note that e¡k�
2tsin(�x) solves the PDE and also satisfies (BC) if �= n

�

L
for some integer n.

Hence,

un(x; t)= e
¡k
¡�n
L

�2tsin��n
L
x
�

satisfies the PDE as well as (BC) for any integer n.

It remains to satisfy (IC) and we plan to do so by taking the right combination of the un(x; t).
At t= 0, we get un(x; 0) = sin

¡ �n
L
x
�
and all of these are 2L-periodic and odd. This matches

exactly the terms we get when we write f(x) as a Fourier sine series (f(x) is only given on (0;
L) and we extend it to an odd 2L-periodic function):

f(x)=
X
n>1

bnsin
�
�n
L
x
�

Consequently, (PDE)+(BC)+(IC) is solved by

u(x; t)=
X
n=1

1

bnun(x; t)=
X
n=1

1

bn e
¡
¡�n
L

�2ktsin��n
L
x
�
:

Comment. Note that the coefficients bn can be computed as

bn=
1
L

Z
¡L

L

f(x)sin
�
n�x
L

�
dx=

2
L

Z
0

L

f(x)sin
�
n�x
L

�
dx;

where the first integral makes reference to the extension of f(x) while the second integral only uses f(x) on its
original interval of definition.
Comment. Note that n= 0 just gives the zero function u0(x; t) = 0, and negative values don't give anything
new because u¡n(x; t)=¡un(x; t).
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Example 161. Find the unique solution u(x; t) to:
ut=uxx (PDE)
u(0; t)=u(�; t)= 0 (BC)
u(x; 0)= sin(2x)¡ 7sin(3x); x2 (0; �) (IC)

Solution. This is the case k=1, L=� of the above. Hence, as we just observed, the functions

un(x; t)= e¡n
2tsin(nx)

satisfy (PDE) and (BC) for any integer n.
Since un(x; 0)= sin(nx), we have

u2(x; 0)¡ 7u3(x; 0)= sin(2x)¡ 7sin(3x)

as needed for (IC).
Therefore, (PDE)+(BC)+(IC) is solved by

u(x; t)=u2(x; t)¡ 7u3(x; t)= e¡4tsin(2x)¡ 7e¡9tsin(3x):

Example 162. Find the unique solution u(x;t) to:
ut=3uxx (PDE)
u(0; t)=u(4; t)= 0 (BC)
u(x; 0)=5sin(�x)¡ sin(3�x); x2 (0; 4) (IC)

Solution. This is the case k=3, L=4 of the above. Hence, the functions

un(x; t)= e
¡3
¡ �n
4

�2tsin��n
4
x
�

satisfy (PDE) and (BC) for any integer n. Since un(x; 0)= sin
¡ �n
4
x
�
, we have

5u4(x; 0)¡u12(x; 0)= 5sin(�x)¡ sin(3�x);

which is what we need for the right-hand side of (IC). Therefore, (PDE)+(BC)+(IC) is solved by

u(x; t)= 5u4(x; t)¡u12(x; t)= 5e¡3�
2tsin(�x)¡ e¡27�2tsin(3�x):
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