Notes for Lecture 31 Wed, 4/16/2025

Partial differential equations

| The heat equation \

We wish to describe one-dimensional heat flow.

Comment. If this sounds very specialized, it might help to know that the heat equation is also used, for instance,
in probability (Brownian motion), financial math (Black-Scholes), or chemical processes (diffusion equation).

Let u(x,t) describe the temperature at time ¢ at position .
If we model a heated rod of length L, then = € [0, L].

Notatior;. u(x, t) depends on two variables. When taking derivatives, we will use the notations u; = %u and

Ugg = 55U for first and higher derivatives.
Experience tells us that heat flows from warmer to cooler areas and has an averaging effect.
Make a sketch of some temperature profile u(x,t) for fixed ¢.

As t increases, we expect maxima (where u,, < 0) of that profile to flatten out (which means
that u; <0); similarly, minima (where u,, > 0) should go up (meaning that u; >0). The simplest
relationship between u; and u,, which conforms with our expectation is u; = k.., with k> 0.

(heat equation)

U= KUgpy

Note that the heat equation is a linear and homogeneous partial differential equation.
In particular, the principle of superposition holds: if 11 and us solve the heat equation, then so does ciu1 + cous.

Higher dimensions. In higher dimensions, the heat equation takes the form u; = k(uzy + uyy) or uy =

92 92 o2
ox? + oy? + 0z2

k(uzy + Uyy +usz). The heat equation is often written as u; =k Au, where A =
operator you may know from Calculus IlI.

is the Laplace

The Laplacian Aw is also often written as Au = V?u. The operator V = (9 /0x,d /dy) is pronounced “nabla”
(Greek for a certain harp) or “del” (Persian for heart), and V2 is short for the inner product V - V.

Let us think about what is needed to describe a unique solution of the heat equation.
e Initial condition at t =0: u(z,0)= f(z) (IC)
This specifies an initial temperature distribution at time t =0.

e Boundary condition at x =0 and = = L: (BC)

Assuming that heat only enters/exits at the boundary (think of our rod as being insulated, except
possibly at the two ends), we need some condition on the temperature at the ends. For instance:

o wu(0,t)=A, u(L,t)=DB
This models a rod where one end is kept at temperature A and the other end at temperature B.
o uy(0,t) =uyu(L,t)=0

This models a rod whose ends are insulated as well.

Under such assumptions, our physical intuition suggests that there should be a unique solution.

Important comment. We can always transform the case u(0,t) = A, u(L,t) = B into u(0,t) =u(L,t) =0 by
using the fact that u(¢,z) = ax + b solves uy = kuy,. Can you spell this out?
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Example 160. To get a feeling, let us find some solutions to u; = k.

e u(x,t)=ax+bis a solution.

e For instance, u(z,t) = eFte is a solution.

[Not a very interesting one for modeling heat flow because it increases exponentially in time.]

k kt

e More interesting are u(z,t) = e *tcos(x) and u(z,t) = e *'sin(z).

2 24 . .
e More generally, e #**tcos(Az) and e =¥ "*sin(\z) are solutions.

e Can you find further solutions?

Important observation. This reveals a strategy for solving the heat equation together with the
following boundary and initial conditions:

U= Kklgy (PDE)
u(0,t) =u(L,t)=0 (BC)
u(z,0)= f(z), ze(0,L)  (IC)

Note that e **sin(\z) solves the PDE and also satisfies (BC) if A = n+ for some integer 7.
Hence,

Un(z,t) = e_k(%)%sin<% x)

satisfies the PDE as well as (BC) for any integer n.

It remains to satisfy (IC) and we plan to do so by taking the right combination of the u,(z,t).
At t =0, we get u,(x,0) = sin(% x) and all of these are 2L-periodic and odd. This matches
exactly the terms we get when we write f(z) as a Fourier sine series (f(x) is only given on (0,

L) and we extend it to an odd 2L-periodic function):

f(x)= Z bnsin(% :1:)

n>1

Consequently, (PDE)+(BC)+(IC) is solved by

oo o0
_ _ —(E)Reg (T
u(a:,t)—z bnun(:ﬁ,t)—z by e sin{ —1 ).
n=1 n=1
Comment. Note that the coefficients b,, can be computed as

bn:i/if(ac)sin(nzx)dx:i/OLf(ac)sin(mIT/x>dx,

where the first integral makes reference to the extension of f(xz) while the second integral only uses f(z) on its
original interval of definition.

Comment. Note that n =0 just gives the zero function ug(x, t) =0, and negative values don't give anything
new because u_y,(z,t) = —un(z,t).
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Ut =Ugx
Example 161. Find the unique solution u(zx,t) to: uEO,t) =u(m,t) =0
u(x,0) =sin(2zx) — 7sin(3z), z € (0,7)

Solution. This is the case k=1, L =7 of the above. Hence, as we just observed, the functions
un(z,t) =e "tsin(nz)

satisfy (PDE) and (BC) for any integer n.

Since uy,(x,0) =sin(nz), we have

ug(z,0) — Tusz(x,0) = sin(2z) — 7sin(3x)
as needed for (IC).
Therefore, (PDE)+(BC)+(IC) is solved by

u(z,t) =us(x,t) — Tus(x, t) = e *sin(2z) — 7Te ~%sin(3x).

Ut = SUg o
Example 162. Find the unique solution u(x,t) to: u(0,t) =wu(4,t) =0
u(x,0) =5sin(mz) —sin(37x), x€(0,4)

Solution. This is the case k =3, L =4 of the above. Hence, the functions

un(x,t) = 6_3(%)2tsin(% m)
satisfy (PDE) and (BC) for any integer n. Since uy(x,0) :sin(%n x), we have
Sug(z,0) — ur2(z, 0) = 5sin(mwz) — sin(3nz),
which is what we need for the right-hand side of (IC). Therefore, (PDE)+(BC)+(IC) is solved by

u(z, t) = bug(z, t) — uia(x, t) =5e =37 tsin(rz) — e 27" tsin(3m).
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