Notes for Lecture 30 Mon, 4/14/2025

Boundary value problems

Example 154. The IVP (initial value problem) y” 4+ 4y =0, y(0) =0, y’(0) =0 has the unique
solution y(x)=0.

Initial value problems are often used when the problem depends on time. Then, y(0) and y’(0)
describe the initial configuration at ¢t =0.

For problems which instead depend on spatial variables, such as position, it may be natural to
specify values at positions on the boundary (for instance, if y(z) describes the steady-state
temperature of a rod at position =, we might know the temperature at the two end points).

The next example illustrates that such a boundary value problem (BVP) may or may not have a
unique solution.

Example 155. Verify the following claims.
(a) The BVP 3" +4y =0, y(0) =0, y(1) =0 has the unique solution y(x)=0.
(b) The BVP y” + w2y =0, y(0)=0, y(1)=0 is solved by y(x) = Bsin(nz) for any value B.
Solution.

(2a) We know that the general solution to the DE is y(z) = A cos(2x) + B sin(2x). The boundary conditions
! !
imply y(0) = A =0 and, using that A=0, y(1) = B sin(2) =0 shows that B =0 as well.

(b) This time, the general solution to the DE is y(z) = A cos(mx) + B sin(wz). The boundary conditions
! !
imply y(0) = A=0 and, using that A=0, y(1) = Bsin(7) =0. This second condition is true for every B.

It is therefore natural to ask: for which A does the BVP y” 4+ Ay =0, y(0) =0, y(L) =0 have
nonzero solutions? (We assume that L >0.)
Such solutions are called eigenfunctions and ) is the corresponding eigenvalue.

Remark. Compare that to our previous use of the term eigenvalue: given a matrix A, we asked: for which \ does
Av — Av = 0 have nonzero solutions v? Such solutions were called eigenvectors and A was the corresponding
eigenvalue.

Example 156. Find all eigenfunctions and eigenvalues of y” + Ay =0, y(0)=0, y(L)=0.
Such a problem is called an eigenvalue problem.

Solution. The solutions of the DE look different in the cases A <0, A=0, A > 0, so we consider them individually.
A=0. Then y(z)=Axz+ B and y(0) = y(L) =0 implies that y(xz) =0. No eigenfunction here.

A < 0. The roots of the characteristic polynomial are +v/—\. Writing p = v/—\, the general solution
!
therefore is y(z) = Ae’pl' + Be P*. y(0) = A 4+ B = 0 implies B = —A. Using that, we get
y(L) = A(ePE —e=PL)=0. For eigenfunctions we need A+ 0, so e”l =e~PL which implies pL = —pL.
This cannot happen since p#0 and L # 0. Again, no eigenfunctions in this case.

A > 0. The roots of the characteristic polynomial are +i\/X. Writing p = /X, the general solution thus

! !
is y(z) = A cos(pz) + B sin(pz). y(0) = A=0. Using that, y(L) = B sin(pL) = 0. Since B # 0 for
eigenfunctions, we need sin(pL)=0. This happens if pL =nn for n=1,2,3, ... (since p and L are both

positive, n must be positive as well). Equivalently, p = 2T Consequently, we find the eigenfunctions

T
nmwe 2

Yn(x) =sin —n=1,2,3,.., with eigenvalue \ = (%) .
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Example 157. Suppose that a rod of length L is compressed by a force P (with ends being pinned
[not clamped] down). We model the shape of the rod by a function y(z) on some interval [0, L].

The theory of elasticity predicts that, under certain simplifying assumptions, 3 should satisfy
Ely"+ Py=0, y(0)=0, y(L)=0.
Here, E'I is a constant modeling the inflexibility of the rod (E, known as Young's modulus, depends on the
material, and I depends on the shape of cross-sections (it is the area moment of inertia)).

. P
In other words, vy + Ay =0, y(0)=0, y(L)=0, with A= =7
The fact that there is no nonzero solution unless \ = (%)2 for some n =1, 2, 3, ..., means that buckling can
2
only occur if P = (%)QEI. In particular, no buckling occurs for forces less than WT]fI

. This is known as the
critical load (or Euler load) of the rod.

Comment. This is a very simplified model. In particular, it assumes that the deflections are small. (Technically,
the buckled rod in our model is longer than L; of course, that's not the case in practice.)

https://en.wikipedia.org/wiki/Euler27s_critical_load
Example 158. Find all eigenfunctions and eigenvalues of
y"+ =0, 7'(0)=0, y(3)=0.
Solution. We distinguish three cases:

A < 0. The characteristic roots are +r = ++/—X and the general solution to the DE is y(x) = Ae"™ +
Be~ ", Then y/(0) = Ar — Br =0 implies B= A, so that y(3) = A(e3" +e73"). Since 3" +e73" >0,
we see that y(3) =0 only if A=0. So there is no solution for A <0.

X = 0. The general solution to the DE is y(z) = A+ Bx. Then y’(0) =0 implies B =0, and it follows from
y(3) = A=0 that A =0 is not an eigenvalue.

X > 0. The characteristic roots are £iv/)\. So, with » = /), the general solution is y(z) = A cos(rz) +
Bsin(rz). y’(0) = Br =0 implies B=0. Then y(3) = A cos(3r) =0. Note that cos(3r) =0 is true if

and only if 3r = g +nm= w for some integer n. Since 7 > 0, we have n > 0. Correspondingly,

A=r?= (W)Q and y(z) = Cos(w a:)

2
In summary, we have that the eigenvalues are A = (W) , with n = 0, 1, 2, ... with corresponding

eigenfunctions y(z) = cos((%%)7r :c)

Example 159. Suppose L > 0. Find all eigenfunctions and eigenvalues of
y"+Ay=0, y'(0)=0, y'(L)=0.
Solution. To solve this eigenvalue problem, we distinguish three cases:

A < 0. Then, the roots are the real numbers £r = ++/—X\ and the general solution to the DE is y(x) =
Ae"™ 4+ Be~". Then y’(0) = Ar — Br =0 implies B= A, so that y/(L) = A(Lel" — Le="). Since
Lel™ — Le=L7" =0 only if r =0, we see that y/(L) =0 only if A=0. So there is no solution for A < 0.

A = 0. Now, the general solution to the DE is y(z) = A+ Bxz. Then y’(z) = B and we see that y’(0) =0
and y’(L) =0 if and only if B=0. So A=0 is an eigenvalue with corresponding eigenfunction y(z)=1.

A > 0. Now, the roots are +iv/A and y(z) = A cos(v/A z) + B sin(v/A x). Hence, y'(z) =
— AV Asin(v/Az)+ Byv/Acos(vAz). y'(0)=B+/A=0implies B=0. Then, y’(L) = —Ay/Asin(Lyv/X) =
0 if and only if sin(L\/X) = 0. The latter is true if and only if L\/A\ = n7 for some integer n.
In that case, A = (%)2 and y(z) :cos(n—L7T ).

In summary, we have that the eigenvalues are A = (%)2, n=0,1,2,3..., (why did we include n =0 but excluded

n=—1,—2,...71) with corresponding eigenfunctions y(x) = COS(% x)
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