
Notes for Lecture 25 Fri, 3/28/2025

Fourier series

The following amazing fact is saying that any 2�-periodic function can be written as a sum of
cosines and sines.
Advertisement. In Linear Algebra II, we will see the following natural way to look at Fourier series: the functions
1, cos(t), sin(t), cos(2t), sin(2t), ::: are orthogonal to each other (for that to make sense, we need to think of
functions as vectors and introduce a natural inner product). In fact, they form an orthogonal basis for the space
of piecewise smooth functions. In that setting, the formulas for the coefficients an and bn are nothing but the
usual projection formulas for orthogonal projection onto a single vector.

Theorem 130. Every� 2�-periodic function f can be written as a Fourier series

f(t)= a0
2
+

X
n=1

1

(ancos(nt)+ bnsin(nt)):

Technical detail�: f needs to be, e.g., piecewise smooth.

Also, if t is a discontinuity of f , then the Fourier series converges to the average f(t¡)+ f(t+)

2
.

The Fourier coefficients an, bn are unique and can be computed as

an=
1
�

Z
¡�

�

f(t)cos(nt)dt; bn=
1
�

Z
¡�

�

f(t)sin(nt)dt:

Comment. Another common way to write Fourier series is f(t)=
X

n=¡1

1
cn e

int.

These two ways are equivalent; we can convert between them using Euler's identity eint= cos(nt)+ i sin(nt).

Definition 131. Let L> 0. f(t) is L-periodic if f(t+L)= f(t) for all t. The smallest such L
is called the (fundamental) period of f .

Example 132. The fundamental period of cos(nt) is 2�/n.

Example 133. The trigonometric functions cos(nt) and sin(nt) are 2�-periodic for every integer
n. And so are their linear combinations. (Thus, 2�-periodic functions form a vector space!)

Example 134. Find the Fourier series of the 2�-periodic function f(t) defined by

f(t)=

8>><>>:
¡1; for t2 (¡�; 0),
+1; for t2 (0; �);
0; for t=¡�; 0; �:
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Solution. We compute a0=
1
�

Z
¡�

�

f(t)dt=0, as well as

an =
1
�

Z
¡�

�

f(t)cos(nt)dt= 1
�

�
¡
Z
¡�

0

cos(nt)dt+
Z
0

�

cos(nt)dt
�
=0

bn =
1
�

Z
¡�

�

f(t)sin(nt)dt= 1
�

�
¡
Z
¡�

0

sin(nt)dt+
Z
0

�

sin(nt)dt
�
=

2
�n

[1¡ cos(n�)]

=
2
�n

[1¡ (¡1)n] =
(

4

�n
if n is odd

0 if n is even
:

In conclusion, f(t)=
X
n=1
n odd

1
4
�n

sin(nt)= 4
�

�
sin(t)+ 1

3
sin(3t)+ 1

5
sin(5t)+ :::

�
.

−π π 2π 3π 4π

Observation. The coefficients an are zero for all n if and only if f(t) is odd.
Comment. The value of f(t) for t=¡�; 0; � is irrelevant to the computation of the Fourier series. They are
chosen so that f(t) is equal to the Fourier series for all t (recall that, at a jump discontinuity t, the Fourier series

converges to the average f(t¡)+ f(t+)

2
).

Comment. Plot the (sum of the) first few terms of the Fourier series. What do you observe? The �overshooting�
is known as the Gibbs phenomenon: https://en.wikipedia.org/wiki/Gibbs_phenomenon

Comment. Set t= �

2
in the Fourier series we just computed, to get Leibniz' series �=4[1¡ 1

3
+
1

5
¡ 1

7
+ :::].

For such an alternating series, the error made by stopping at the term 1/n is on the order of 1/n. To compute
the 768 digits of � to get to the Feynman point (3.14159265:::721134999999:::), we would (roughly) need
1/n<10¡768, or n>10768. That's a lot of terms! (Roger Penrose, for instance, estimates that there are about
1080 atoms in the observable universe.)
Remark. Convergence of such series is not completely obvious. (Do you recall, for instance, the alternating sign
test from Calculus II?) For instance, the (odd part of) the harmonic series 1+ 1

3
+
1

5
+
1

7
+ ��� diverges.

Fourier series with general period

The case of 2�-periodic functions generalizes easily to the case of general periodic functions.

Note that cos(�t/L) and sin(�t/L) have period 2L.

Theorem 135. Every� 2L-periodic function f can be written as a Fourier series

f(t)= a0
2
+

X
n=1

1 �
ancos

�
n�t
L

�
+ bnsin

�
n�t
L

��
:

Technical detail�: f needs to be, e.g., piecewise smooth.

Also, if t is a discontinuity, then the Fourier series converges to the average f(t¡)+ f(t+)

2
.

The Fourier coefficients an, bn are unique and can be computed as

an=
1
L

Z
¡L

L

f(t)cos
�
n�t
L

�
dt; bn=

1
L

Z
¡L

L

f(t)sin
�
n�t
L

�
dt:
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Comment. This follows from Theorem 130 because, if f(t) has period 2L, then f~(t) := f(Lt/�) has period 2�.

Example 136. Find the Fourier series of the 2-periodic function g(t)=

8>><>>:
¡1 for t2 (¡1; 0)
+1 for t2 (0; 1)
0 for t=¡1; 0; 1

.

Solution. Instead of computing from scratch, we can use the fact that g(t)= f(�t), with f as in the previous

example, to get g(t)= f(�t)=
X
n=1
n odd

1
4
�n

sin(n�t).
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