
Notes for Lecture 24 Wed, 3/26/2025

Power series of familiar functions

(Unless we specify otherwise, power series are meant to be about x=0.)

Example 122. Determine the power series for cos(x) at x=0.
Solution. Let y(x) = cos(x). After computing a few derivatives, we realize that y(2n)(x) = (¡1)ncos(x) and
y(2n+1)(x)=¡(¡1)nsin(x). In particular, y(2n)(0)= (¡1)n and y(2n+1)(0)= 0. It follows that

cos(x)=
X
n=0

1
y(n)(0)
n!

xn=
X
n=0

1
(¡1)n
(2n)!

x2n=1¡ x2

2
+
x4

4!
¡ x6

6!
+ :::

Comment. Note that the above observations on y(2n) and y(2n+1) simply reflect the fact that cos(x) is the
unique solution to the IVP y 00=¡y, y(0)=1, y 0(0)= 0.
Alternatively. We can also deduce the power series via Euler's formula: eix= cos(x)+ i sin(x). Since

eix=
X
n=0

1
(ix)n

n!
=
X
m=0

1
(ix)2m

(2m)!
+
X
m=0

1
(ix)2m+1

(2m+1)!
=
X
m=0

1
(¡1)mx2m
(2m)!

+ i
X
m=0

1
(¡1)mx2m+1

(2m+1)!
,

we conclude that cos(x)=
X
n=0

1
(¡1)n
(2n)!

x2n and sin(x)=
X
n=0

1
(¡1)n
(2n+1)!

x2n+1.

Example 123. Determine the first several terms in the power series of sin(2x3) at x=0.
Solution. (direct�unpleasant) If f(x)=sin(2x3), then f 0(x)=6x2cos(2x3) as well as f 00(x)=12xcos(2x3)¡
36x4 sin(2x3) and f 000(x)= 12cos(2x3)¡ 216x3 sin(2x3)+ 216x6 cos(2x3).
In particular, f(0)= 0, f 0(0)=0, f 00(0)= 0 and f 000(0)= 12.

It follows that f(x)= f(0)+ f 0(0)x+
1

2
f 00(0)x2+ :::=0+0x+0x2+

12
3!
x3+ :::=2x3+ :::

Solution. (via series for sine) As done in the previous example for cos(x), we can derive that

sin(x)=
X
n=0

1
(¡1)n
(2n+1)!

x2n+1= x¡ 1
6
x3+

1
120

x5¡ :::

It follows that

sin(2x3) =
X
n=0

1
(¡1)n
(2n+1)!

(2x3)2n+1=
X
n=0

1
(¡1)n22n+1
(2n+1)!

x6n+3

=
21

1!
x3¡ 23

3!
x9+

25

5!
x15¡ :::=2x3¡ 4

3
x9+

4
15
x15¡ :::

Example 124. The hyperbolic cosine cosh(x) is defined to be the even part of ex. In other
words, cosh(x)= 1

2
(ex+ e¡x). Determine its power series.

Solution. It follows from ex=
X
n=0

1
xn

n!
that cosh(x)=

X
n=0

1
x2n

(2n)!
.

Comment. Note that cosh(ix)= cos(x) (because cos(x)= 1

2
(eix+ e¡ix)).

Comment. The hyperbolic sine sinh(x)=
X
n=0

1
x2n+1

(2n+1)!
is similarly defined to be the odd part of ex.
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Example 125. Determine a power series for
1

1+x2
.

Solution. Replace x with ¡x2 in 1
1¡ x =

X
n=0

1
xn (geometric series!) to get 1

1+ x2
=
X
n=0

1
(¡1)nx2n.

Example 126. Determine a power series for arctan(x).

Solution. Recall that arctan(x)=
Z

dx

1+x2
+C. Hence, we need to integrate 1

1+ x2
=
X
n=0

1
(¡1)nx2n.

It follows that arctan(x)=
X
n=0

1
(¡1)nx

2n+1

2n+1
+C. Since arctan(0)= 0, we conclude that C =0.

Example 127. Determine a power series for ln(x) around x=1.
Solution. This is equivalent to finding a power series for ln(x+1) around x=0 (see the final step).

Observe that ln(x+1)=

Z
dx
1+ x

+C and that
1

1+ x
=
X
n=0

1
(¡1)nxn.

Integrating, ln(x+1)=
X
n=0

1
(¡1)nx

n+1

n+1
+C. Since ln(1)=0, we conclude that C=0.

Finally, ln(x+1)=
X
n=0

1
(¡1)nx

n+1

n+1
is equivalent to ln(x)=

X
n=0

1
(¡1)n
n+1

(x¡ 1)n+1.

Comment. Choosing x=2 in ln(x)=
X
n=0

1
(¡1)n
n+1

(x¡1)n+1 results in ln(2)=
X
n=0

1
(¡1)n
n+1

=1¡ 1
2
+
1
3
¡ 1
4
+ :::.

The latter is the alternating harmonic sum.
Can you see from the series for ln(x) why the harmonic sum 1+

1

2
+
1

3
+
1

4
+ ::: diverges?

Example 128. (error function) Determine a power series for erf(x)= 2
�

p
Z
0

x

e¡t
2
dt.

Solution. It follows from ex=
X
n=0

1
xn

n!
that e¡t

2
=
X
n=0

1
(¡1)nt2n

n!
.

Integrating, we obtain erf(x)= 2

�
p
Z
0

x

e¡t
2
dt=

2

�
p

X
n=0

1
(¡1)nx2n+1
n!(2n+1)

.

Example 129. Determine the first several terms (up to x5) in the power series of tan(x).
Solution. Observe that y(x)= tan(x) is the unique solution to the IVP y0=1+ y2, y(0)= 0.
We can therefore proceed to determine the first few power series coefficients as we did earlier.
That is, we plug y= a0+ a1x+ a2x

2+ a3x
3+ a4x

4+ ::: into the DE. Note that y(0)=0 means a0=0.
y 0= a1+2a2x+3a3x

2+4a4x
3+5a5x

4+ :::

1+ y2=1+ (a1x+ a2x
2+ a3x

3+ :::)2=1+ a1
2x2+(2a1a2)x

3+(2a1a3+ a2
2)x4+ :::

Comparing coefficients, we find: a1=1, 2a2=0, 3a3= a1
2, 4a4=2a1a2, 5a5=2a1a3+ a2

2.

Solving for a2; a3; :::, we conclude that tan(x)= x+
x3

3
+
2x5

15
+
17x7

315
+ :::

Comment. The fact that tan(x) is an odd function translates into an= 0 when n is even. If we had realized
that at the beginning, our computation would have been simplified.

Advanced comment. The full power series is tan(x)=
X
n=1

1
(¡1)n¡122n(22n¡ 1)B2n

(2n)!
x2n¡1.

Here, the numbers B2n are (rather mysterious) rational numbers known as Bernoulli numbers.
The radius of convergence is �/2. Note that this is not at all obvious from the DE y 0=1+ y2. This illustrates
the fact that nonlinear DEs are much more complicated than linear ones. (There is no analog of Theorem 111.)
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