Notes for Lecture 24 Wed, 3/26/2025

‘ Power series of familiar functions

(Unless we specify otherwise, power series are meant to be about  =0.)

Example 122. Determine the power series for cos(z) at 2 =0.

Solution. Let y(z) = cos(z). After computing a few derivatives, we realize that y(*>™)(z) = (—1)"cos(z) and
y(27+ D (3) = —(—1)"sin(z). In particular, 3>™(0) = (—=1)" and 2?1 (0) =0. It follows that
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cos(z) = E E_ (2n)' 1-— 2 —|— TR + ..

Comment. Note that the above observations on 3> and 3(>”*1) simply reflect the fact that cos(z) is the
unique solution to the IVP 3y’ = —y, y(0)=1, y/(0) =0.

Alternatively. We can also deduce the power series via Euler's formula: e’ = COS( ) +isin(x). Since

o oo (Zgj)n B & (Zm)z (Zm)2m+1 ( 1)m 2m ( 1)m 2m+41
we conclude that cos(z) = Z ((;1;' 22" and sin(z) = Z (2(n —11-)1)' z2n+1

Example 123. Determine the first several terms in the power series of sin(2z3) at z =0.

Solution. (direct—unpleasant) If f(x)=sin(2x3), then f’(z)=6x2cos(2x>) as well as f"/(x) =12z cos(2z3) —
3624 sin(223) and f"'(x) = 12 cos(2z3) — 21623 sin(2x3) + 21625 cos(223).

In particular, f(0)=0, f/(0)=0, f/(0)=0 and f""/(0) =12

It follows that f(z) = f(0) + f/(0)z + 5 f"(0)2? + ... —O+Om+0x2+ b =208

Solution. (via series for sine) As done in the previous example for cos(x), we can derive that
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It follows that

sin(2z3) = Z =" ———(223)2n 1 = Z yreT n22n+1m6n+3
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Example 124. The hyperbolic cosine cosh(z) is defined to be the even part of e®. In other
words, cosh(z) :é(e”’—i— e~"). Determine its power series.

o0
. x™
Solution. It follows from e* = E — that cosh(z) =
n

n=0 ’ n=0

Comment. Note that cosh(iz) = cos(z) (because cos(z) = %(eiw +e7i)).

& 2n+1
Comment. The hyperbolic sine sinh(z) = Z m is similarly defined to be the odd part of e”.
n=0 ’
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Example 125. Determine a power series for ——.
1+ 22

. . . 1
Solution. Replace z with —z2 in il
—x

= Z x™ (geometric series!) to get T
n=0

o0
5= Z (—1)"x?n,
n=0

Example 126. Determine a power series for arctan(x).

oo
Solution. Recall that arctan(z) :/1 j—x 5+ C. Hence, we need to integrate _1_1 5= Z (—1)nx?n,
x
=0

It follows that arctan(z) = Z (=)™ —i— C'. Since arctan(0) =0, we conclude that C'=0.

Example 127. Determine a power series for In(xz) around x =1.

Solution. This is equivalent to finding a power series for In(x + 1) around =0 (see the final step).

Observe that ln(x+1):/ dz +C and that 1 = Z (=1)"z™

14+
Integrating, In(z + 1) = Z (— 1)" + C'. Since In(1) =0, we conclude that C'=0.
Finally, In(z +1) = Z:O (—1)”n+ 7 is equivalent to In(z) = Z (a: — 1)t
n=— n=0
( = (=D 11 1
_ +1 i = — — =
Comment. Choosing z=2in In(z Z 1) ™ resultsin In(2) = Z - 5+ 371
The latter is the alternating harmomc sum
Can you see from the series for In(z) why the harmonic sum 1+ % + % + i + ... diverges?
. . . 2 [T .
Example 128. (error function) Determine a power series for erf(z) :T e~ dt.
mJo
0 ( l)nth
Solution. It follows from e Z that e~ Z .
n=0 n=0
. & n 2n+1
Integrating, we obtain erf(z) = ﬁ/o e~ Pdt = Z '1()2n .y

Example 129. Determine the first several terms (up to z°) in the power series of tan(z).
Solution. Observe that y(z) = tan(z) is the unique solution to the IVP v/ =1+ 32, y(0) =

We can therefore proceed to determine the first few power series coefficients as we did earlier.

That is, we plug y=ag+ a1z + asz? + azx® + asz* + ... into the DE. Note that y(0) =0 means ag=0.
y' = a1 + 2a9x + 3azx? + dasx® + Saszt + ...
14+ 92 =1+ (a12 4 asz? 4+ azz® + ...)2 =1+ afz? + (2a102) x> + (20103 + a3)z* + ...

Comparing coefficients, we find: a; =1, 2a2=0, 3az= a%, 4a4 =2a1a2, a5 =2a1a3+ a%.

1727

315 + ...

Solving for a2, as, ..., we conclude that tan(z) ==z —|— —i— +

Comment. The fact that tan(z) is an odd function translates into a, =0 when n is even. If we had realized

that at the beginning, our computation would have been simplified.

e n—192n/92n __
Advanced comment. The full power series is tan(z) = Z (=1) 2 (2' 1)Ban, x?n -1
n=1 (2n)

Here, the numbers Ba,, are (rather mysterious) rational numbers known as Bernoulli numbers.

The radius of convergence is 7 /2. Note that this is not at all obvious from the DE y’ =1+ 32. This illustrates
the fact that nonlinear DEs are much more complicated than linear ones. (There is no analog of Theorem 111.)
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