Notes for Lecture 23 Mon, 3/24/2025

Review. Theorem 111: If xg is an ordinary point of a linear IVP, then it is guaranteed to have a
power series solution y(z) ="  an(x —x0)"

Moreover, its radius of convergence is at least the distance between xy and the closest singular point.

Example 115 Find a minimum value for the radius of convergence of a power series solution to
(2% +4)y” —3zy' +—y=0atz=2.
Solution. The singular points are x = 2%, —1. Hence, x = 2 is an ordinary point of the DE and the distance
to the nearest singular point is |2 — 2i| = 1/22 + 22 = /8 (the distances are |2 — (—1)| =3, |2 — (421)| = /).

By Theorem 111, the DE has power series solutions about = = 2 with radius of convergence at least /8.

Example 116. (caution!) Theorem 111 only holds for linear DEs! For nonlinear DEs, it is very
hard to predict whether there is a power series solution and what its radius of convergence is.

Consider, for instance, the nonlinear DE 3’ — 2 =0.

o
= Z "™ (see Example 119), which
n=0

Its coefficients have no singularities. A solution to this DE is y(z) = I

clearly has a problem at z =1 (the radius of convergence is 1).
On the other hand. y(z) also solves the linear DE (1 — )y’ — y =0 (or, even simpler, the order 0 “differential”
equation (1 —z)y=1). Note how the DE has the singular point z =1. Theorem 111 then allows us to predict
that y(x) must have a power series with radius of convergence at least 1.

Example 117. (Bessel functions) Consider the DE z%y” + xy’ + 2%y = 0. Derive a recursive

description of a power series solutions y(x) at z=0.

Caution! Note that =0 is a singular point (the only) of the DE. Theorem 111 therefore does not guarantee
a basis of power series solutions. [However, x = 0 is what is called a regular singular point; for these, we are
guaranteed one power series solution, as well as additional solutions expressed using logarithms and power series.]

Comment. We could divide the DE by x (but that wouldn't really change the computations below). The reason
for not dividing that x is that this DE is the special case =0 of the Bessel equation x2y"’ +zy’ + (22 — a?)y =
0 (for which no such dividing is possible).

Solution. (plug in power series) Let us spell out power series for z2y, xy’, 2%y’ starting with y(z) = Z anx™:

oo [e5S) n=0
ZEQy(ZE) = Z anrt2= Z Ay — 2™
n=0 n=2
oo oo
zy'(z) = Z nap,x" (because y'(z) = Z napz™ 1)
n=1 n=1
oo oo
22y (x) = Z n(n — l)anx” (because y''(z) = Z n(n —1apz™?)
n=2 OO o0 n=2
Hence, the DE becomes Z n—1)apx™+ Z napx™ + Z an—2x™ =0. We compare coefficients of z":
n=2 n=
e n=1: a;=0
e n>2: n(n—1)a,+na,+a,_2=0, which simplifies to na,, = —a, 2.
It follows that as,, = (; ,: ao and agp 41 =0.

Observation. The fact that we found a; = O reflects the fact that we cannot represent the general solution

through power series alone.
o

Comment. If ag=1, the function we found is a Bessel function and denoted as Jy(z) = Z B ( )
n!
n=0
The more general Bessel functions .J,(x) are solutions to the DE z%y"' + 2y’ + (22 — a?)y =0.
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Example 118. (caution!) Consider the linear DE 2%y’ =y — 2. Does it have a convergent power
series solution at x =07
Important note. The DE 22y’ =y — x has the singular point z =0. Hence, Theorem 111 does not apply.

Advanced. Moreover, in contrast to the previous example, © =0 is not a regular singular point. Indeed, as we
see below, there is no power series solution of the DE at all.

Solution. Let us look for a power series solution y Z anx™
() :xQZ napz™ 1= Z napz"tl= Z (n— 1)an_1x”
o0
Hence, z2 y' =y — x becomes Z (n—1ap—1z Z — 2. We compare coefficients of z":
n=2 n=0

e n=0: ag=0.
e n=1: 0=a1—1,sothata;=1.

e n>2: (n-—1)a,_1=an, from which it follows that a,,=(n — 1)ap,_1=(n—1)(n —2)a, 2= =
(n—Dlag=Mnm—-1).
oo
Hence the DE has the “formal” power series solution y(z) = Z (n—1)lz™.
n=1
However, that series is divergent for all 2 # 0; that is, the radius of convergence is 0.

 Inverses of power series

1
Example 119. (geometric series "=
p (g ) D) =
n=0
. 1
Why? If y(z)= Z x™, then zy =y — 1 (write down the power series for both sides!). Hence, y = T

n=0
Alternatively, start with y = T

im and note that y solves the order 0 “differential” (inhomogeneous) equation

(1—xz)y=1. We can then determine a power series solution as we did in Example 107 to find y =" jz"™.

1

Example 120. Derive a recursive description of the power series for y(x) = F—t

Solution. Note that y(x) satisfies the “differential” equation (1 — 2z — %)y = 1 of order 0 (as such, we need 0
initial conditions). We can therefore determine a power series solution as we did in Example 107:

[e @]
Write y(z) = Z apx™. Then

[e @] o0 [e @] o0
1:(1—x—x2)z anx™ = Z anx™ — Z anx™ Tl — Z anx"t2
n=0 n=0 n=0 n=0
oo oo oo
= Z anx™ — Z Ap 1™ — Z Ay —ox™
n=0 n=1 n=2

We compare coefficients of x":

e n=1: 0=aj—ag, sothat a1 =ag=1.
e n>2 0=a,—an—1—an—_sg or, equivalently, a, =an—1+ an,_o.

This is the recursive description of the Fibonacci numbers F,! In particular a,, = F,.
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The first few terms. % =1+4+2+2224+ 323+ 524+ 825+ 1328+ ...
—z—x

Comment. The function y(z) is said to be a generating function for the Fibonacci numbers.

Challenge. Can you rederive Binet's formula from partial fractions and the geometric series?

1+7x

Example 121. (HW) Derive a recursive description of the power series for y(x) =12 _9.2

oo
Solution. Write y(z) = Z anz™. Then
n=0

[ee]

1+7m:(1—m—2x2)i anz™ = Z a

n=0

0o 0o
n __ E anxn+1_2§ anxn+2
n=0 n=0

3

nT

=0

oo o o

= Z anpx™ — Z an,lm"—2z Ay —2x™.
=0 n=1 n=2

n
We compare coefficients of x:
e n=0: 1=ap.
e n=1. T7T=a;—ag, sothat a;=74+ag=38.
e n>2: 0=ap—anpn_1—2an—_2.

If we prefer, we can rewrite the final recurrence as a,, 42 — an41 — 2a, =0 for n > 0. The initial conditions are
apg= ]., a] = 8.
Comment. In terms of the recurrence operator NV, the recurrence is (N2 — N — 2)a,, =0.

Comment. As in Example 46, we can solve this recurrence and obtain a Binet-like formula for a,. In this
particular case, we find a,, =3-2" —2(—1)".
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