
Notes for Lecture 21 Wed, 3/19/2025

Review. If y(x) is �nice� at x=x0 (i.e. analytic around x=x0), then

y(x)=
X
n=0

1

an(x¡x0)n with an=
y(n)(x0)

n!
:

In particular, at x=0,

y(x)=
X
n=0

1
y(n)(0)

n!
xn= y(0)+ y 0(0)x+ 1

2
y 00(0)x2+ 1

6
y 000(0)x3+ :::

Notation. When working with power series
P

n=0
1 anx

n, we sometimes write O(xn) to indicate
that we omit terms that are multiples of xn:

For instance. ex=1+x+
1

2
x2+O(x3) or cos(x)= 1¡ 1

2
x2+

1

24
x4+O(x6).

Example 105. Let y(x) be the unique solution to the IVP y 0=x2+ y2, y(0)=1.
Determine the first several terms (up to x4) in the power series of y(x).
Solution. (successive differentiation�for humans) From the DE, y 0(0)= 02+ y(0)2=1.
Differentiating both sides of the DE, we obtain y 00=2x+2yy 0. In particular, y 00(0)= 2.
Continuing, y 000=2+2(y 0)2+2yy 00 so that y 000(0)= 2+2+2 � 2=8.

Likewise, y(4)=6y 0y 00+2yy 000 so that y(4)(0)= 12+ 16= 28.

Hence, y(x)= y(0)+ y0(0)x+
1

2
y 00(0)x2+

1

6
y 000(0)x3+

1

24
y(4)(0)x4+ :::=1+ x+x2+

4

3
x3+

7

6
x4+ :::

Comment. This approach requires the (symbolic) computation of intermediate derivatives. This is costly (even
just the size of the simplified formulas is quickly increasing) and so the solution below is usually preferable for
practical purposes. However, successive differentiation works well when working by hand.

Solution. (plug in power series�for computers) The powers series y= a0+ a1x+ a2x
2+ a3x

3+ a4x
4+ :::

simplifies to y=1+ a1x+ a2x
2+ a3x

3+ a4x
4+ ::: because of the initial condition.

Therefore, y 0= a1+2a2x+3a3x
2+4a4x

3+ :::

To determine a2; a3; a4; a5, we need to expand x2+ y2 into a power series:

y2=1+2a1x+(2a2+ a1
2)x2+(2a3+2a1a2)x

3+(2a4+2a1a3+ a2
2)x4+ ::: [we don't need the last term]

Equating coefficients of y 0 and x2+ y2, we find a1=1, 2a2=2a1, 3a3=1+2a2+ a1
2, 4a4=2a3+2a1a2.

So a1=1, a2=1, a3=
4

3
, a4=

7

6
and, hence, y(x)= 1+ x+x2+

4

3
x3+

7

6
x4+ :::

Below is a plot of y(x) (in blue) and our approximation:
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Note how the approximation is very good close to 0 but does not provide us with a �global picture�.
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Example 106. Let y(x) be the unique solution to the IVP y 00= cos(x+ y), y(0)=0, y 0(0)=1.
Determine the first several terms (up to x5) in the power series of y(x).
Solution. (successive differentiation�for humans) From the DE, y 00(0)= cos(0+ y(0))= 1.
Differentiating both sides of the DE, we obtain y 000=¡sin(x+ y)(1+ y 0).
In particular, y 000(0)=¡sin(0+ y(0))(1+ y 0(0))= 0.

Likewise, y(4)=¡cos(x+ y)(1+ y 0)2¡ sin(x+ y)y 00 shows y(4)(0)=¡1 � 22¡ 0=¡4.
Continuing, y(5)= sin(x+ y)(1+ y 0)3¡ 3cos(x+ y)(1+ y0)y 00¡ sin(x+ y)y 000 so that y(5)(0)=¡6.

Hence, y(x)=x+
1

2
y 00(0)x2+

1

6
y000(0)x3+

1

24 y
(4)(0)x4+

1

120 y
(5)(0)x5+ :::= x+

1

2
x2¡ 1

6
x4¡ 1

20x
5+ :::

Solution. (plug in power series�for computers) The powers series y= a0+ a1x+ a2x
2+ a3x

3+ a4x
4+ :::

simplifies to y= x+ a2x
2+ a3x

3+ a4x
4+ ::: because of the initial conditions.

Therefore, y 0=1+2a2x+3a3x
2+4a4x

3+ ::: and y 00=2a2+6a3x+ 12a4x2+ 20a5x3+ :::

To determine a2; a3; a4; a5, we need to expand cos(x+ y) into a power series:

Recall that cos(x)= 1¡ 1

2
x2+

1

24x
4+ :::

Hence, cos(x+ y)= 1¡ 1

2
(x+ y)2+

1

24
(x+ y)4+ :::=1¡ 1

2
x2¡ xy¡ 1

2
y2+O(x4).

Since y2=(x+ a2x
2+ a3x

3+ :::)2= x2+2a2x
3+O(x4),

cos(x+ y)= 1¡ 1

2
x2¡x(x+ a2x

2)¡ 1

2
(x2+2a2x

3)+O(x4)= 1¡ 2x2¡ 2a2x3+O(x4).

Equating coefficients of y 00 and cos(x+ y), we find 2a2=1, 6a3=0, 12a4=¡2, 20a5=¡2a2.

So a2=
1

2
, a3=0, a4=¡

1

6
, a5=¡

1

20
and, hence, y(x)= x+

1

2
x2¡ 1

6
x4¡ 1

20
x5+ :::

Below is a plot of y(x) (in blue) and our approximation:
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Power series solutions to linear DEs

Note how in the last two examples the �plug in power series� approach was complicated by the
fact that the DE was not linear (we had to expand y2 as well as cos(x+ y), respectively).
For linear DEs, this complication does not arise and we can readily determine the complete power
series expansion of analytic solutions (with a recursive description of the coefficients).

Example 107. (Airy equation, part II) Let y(x) be the unique solution to the IVP y 00= xy,
y(0)= a, y 0(0)= b. Determine the power series of y(x).
Solution. (plug in power series) Let us spell out the power series for y; y 0; y 00 and xy:

y(x)=
X
n=0

1
anx

n

y0(x)=
X
n=1

1
nanx

n¡1=
X
n=0

1
(n+1)an+1x

n

y00(x)=
X
n=2

1
n(n¡ 1)anxn¡2=

X
n=0

1
(n+2)(n+1)an+2x

n

xy(x)=
X
n=0

1
anx

n+1=
X
n=1

1
an¡1x

n

Hence, y00=xy becomes
X
n=0

1
(n+2)(n+1)an+2x

n=
X
n=1

1
an¡1xn. We compare coefficients of xn:

� n=0: 2 � 1a2=0, so that a2=0.

� n> 1: (n+2)(n+1)an+2= an¡1

Replacing n by n¡ 2, this is equivalent to n(n¡ 1)an= an¡3 for n> 3.

In conclusion, y(x)=
X
n=0

1
anx

n with a0= a, a1= b, a2=0 as well as, for n> 3, an= 1

n(n¡ 1)an¡3.

First few terms. In particular, y= a

�
1+

x3

2 � 3 +
x6

(2 � 3)(5 � 6) + :::

�
+ b

�
x+

x4

3 � 4 +
x7

(3 � 4)(6 � 7) + :::

�
.

Advanced. The solution with y(0)= 1

32/3¡(2/3)
and y 0(0)=¡ 1

31/3¡(1/3)
is known as the Airy function Ai(x).

[A more natural property of Ai(x) is that it satisfies y(x)! 0 as x!1.]
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